kth.sePublications
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Magnetic properties of Ni(Co)MnSn and Co2FeGe Heusler alloys and Al-substituted garnets
KTH, School of Engineering Sciences (SCI), Applied Physics, Quantum and Nanostructure Physics.ORCID iD: 0000-0002-7663-6131
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis is a study of the static and dynamic magnetic properties of Heusler alloys and substituted yttrium iron garnets (YIG) using magnetometry, ferromagnetic resonance (FMR), and Brillouin light scattering (BLS) measurement techniques, in combination with other structural and chemical analysis methods. The following main research results were obtained.

Epitaxial films of magnetic shape memory alloy Ni(Co)MnSn were found to undergo at 270 K a martensitic phase transformation from the cubic austenitic phase to a twinned orthorhombic martensitic phase, which is accompanied by a 3-fold splitting of the FMR in the system. The additional resonance lines were explained as due to weak antiferromagnetic coupling of the ferromagnetic twins across twin boundaries, which makes the submicron-twinned martensite phase resemble an artificial antiferromagnetic superlattice. The elastic energy balance of the film/substrate interface was found to result in the formation of a submicron, stripe-like, periodical structure of twins, which is of interest for spintronic and magnonic applications. 

Epitaxial films of full Heusler alloy Co2FeGe were investigated in terms of their structure and magnetic properties. Improved quality of epitaxy, formation of an atomically ordered L21 phase, increased magnetization, and reduced spin damping were observed for films processed at elevated temperature. BLS and FMR experiments showed that room temperature deposition followed by annealing yields the highest magnetization, exchange stiffness, and lowest spin damping in the material, which are important characteristics for high-speed spintronic devices. Strong hybridization of the spin waves modes in the Damon-Eshbach geometry was found in the BLS dispersion data, which is promising for applications in magnonic waveguides and logic devices.

Magnetometry of Al-substituted YIG (Y3AlFe4O12) revealed a sharp rise in magnetic anisotropy below 150 K, while the saturation magnetization, exchange and spin-wave stiffness change only slightly. Using FMR we determined the effective magnetization, anisotropy, resonance field, spin damping, as well as their temperature dependence -- key parameters governing the spin dynamics in the material, important for its applications in high-speed circuits operating at room and cryogenic temperatures.

Abstract [sv]

Detta avhandlingsarbete är en studie av de statiska och dynamiska magnetiska egenskaperna hos Heusler-legeringar och substituerade yttriumjärngranater (YIG) med hjälp av magnetometri, ferromagnetisk resonans (FMR), och Brillouin-ljusspridning (BLS) mättekniker, i kombination med andra strukturella och kemiska analysmetoder. Följande huvudsakliga forskningsresultat erhölls.

Epitaxiella filmer av magnetisk formminneslegering Ni(Co)MnSn befanns genomgå en martensitisk fastransformation vid 270 K från den kubiska austenitiska fasen till en tvillingortorombisk martensitisk fas, som åtföljs av en 3-faldig delning av FMR i systemet . De ytterligare resonanslinjerna förklarades bero på svag antiferromagnetisk koppling av de ferromagnetiska tvillingarna över tvillinggränserna, vilket gör att den submikron tvilling-martensitfasen liknar ett artificiellt antiferromagnetiskt supergitter. Den elastiska energibalansen för film/substrat-gränsytan visade sig resultera i bildandet av en submikronisk, randliknande periodisk struktur hos tvillingar, vilket är av intresse för spintroniska och magnoniska tillämpningar.

Strukturen och magnetiska egenskaperna hos epitaxiella Heusler-lege-ringsfilmer Co2FeGe deponerade på MgO-substrat undersöktes. Förbättrad kvalitet på epitaxi, bildning av en atomiskt ordnad L21-fas, ökad magnetisering och minskad spinndämpning observerades för filmer som glödgades vid förhöjd temperatur. BLS- och FMR-mätningar visade att deponering vid rumstemperatur följt av glödgning ger högsta magnetisering, exchange-stiffness och lägsta spinndämpning i filmerna, vilket är önskvärda egenskaper för spinntroniska höghastighetskretsar. Stark hybridisering av spinnvågor i Damon-Eshbach-geometrin observerades, vilket är attraktivt för tillämpningar i magnoniska signalbehandlingskretsar.

Magnetometri av Al-substituerad YIG (Y3AlFe4O12) visade en kraftig ökning av magnetisk anisotropi under 150 K, medan mättnadsmagnetisering, exchange-stiffness och spinnvågs-stiffness endast ändras något. Med hjälp av FMR fastställde vi den effektiva magnetiseringen, anisotropikonstanten, resonansfältet, spinndämpningskonstanten, såväl som deras temperaturberoende - nyckelparametrar som styr spindynamiken i materialet, viktiga för dess tillämpningar i höghastighetskretsar som arbetar i rum och kryogena temperaturer.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. , p. 64
Series
TRITA-SCI-FOU ; 2025:07
Keywords [en]
magnetization, spin dynamics, Heusler alloys, substituted garnets
Keywords [sv]
magnetisering, spinndynamik, Heusler-legeringar, substituerade granater
National Category
Nanotechnology for Material Science
Identifiers
URN: urn:nbn:se:kth:diva-365912ISBN: 978-91-8106-196-3 (print)OAI: oai:DiVA.org:kth-365912DiVA, id: diva2:1980278
Public defence
2025-04-11, 4205, AlbanoHus3, Albanovagen 29, Stockholm, 10:00 (English)
Opponent
Supervisors
Projects
SSF UKR24-0002
Note

QC-2025-07-03

Available from: 2025-07-03 Created: 2025-07-01 Last updated: 2025-07-03Bibliographically approved
List of papers
1. Effect of Thermal Processing on the Structural and Magnetic Properties of Epitaxial Co2FeGe Films
Open this publication in new window or tab >>Effect of Thermal Processing on the Structural and Magnetic Properties of Epitaxial Co2FeGe Films
Show others...
2024 (English)In: Nanomaterials, E-ISSN 2079-4991, Vol. 14, no 21, article id 1745Article in journal (Refereed) Published
Abstract [en]

The structure and magnetic properties of epitaxial Heusler alloy films (Co2FeGe) deposited on MgO (100) substrates were investigated. Films of 60 nm thickness were prepared by magnetron co-sputtering at different substrate temperatures (TS), and those deposited at room temperature were later annealed at various temperatures (Ta). X-ray diffraction confirmed (001) [110] Co2FeGe || (001) [100] MgO epitaxial growth. A slight tetragonal distortion of the film cubic structure was found in all samples due to the tensile stress induced by the mismatch of the lattice parameters between Co2FeGe and the substrate. Improved quality of epitaxy and the formation of an atomically ordered L21 structure were observed for films processed at elevated temperatures. The values of magnetization increased with increasing TS and Ta. Ferromagnetic resonance (FMR) studies revealed 45° in-plane rotation of the easy anisotropy axis direction depending on the degree of the tetragonal distortion. The film annealed at Ta = 573 K possesses the minimal FMR linewidth and magnetic damping, while both these parameters increase for another TS and Ta. Overall, this study underscores the crucial role of thermal treatment in optimizing the magnetic properties of Co2FeGe films for potential spintronic and magnonic applications.

Place, publisher, year, edition, pages
MDPI AG, 2024
Keywords
ferromagnetic resonance, Heusler alloys, magnetostatic properties, thin films
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:kth:diva-356670 (URN)10.3390/nano14211745 (DOI)001351759400001 ()39513825 (PubMedID)2-s2.0-85208448293 (Scopus ID)
Note

QC 20241202

Available from: 2024-11-20 Created: 2024-11-20 Last updated: 2025-07-01Bibliographically approved
2. Spin waves in Co2FeGe films
Open this publication in new window or tab >>Spin waves in Co2FeGe films
Show others...
2025 (English)In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 137, no 12, article id 123902Article in journal (Refereed) Published
Abstract [en]

The dynamic magnetic properties of full Heusler alloy thin films of Co2FeGe, grown on MgO (001) substrates under different thermal conditions, were investigated. Brillouin light scattering and ferromagnetic resonance measurements revealed that depositing at room temperature followed by annealing at 300 ° C for 1 h produces the best results for maximizing magnetization, exchange stiffness, and minimizing spin-dynamic dissipation in the films, which are desirable characteristics for high-speed spintronic devices. Additionally, strong hybridization of spin waves in the Damon-Eshbach geometry was observed, which is attractive for applications in magnonic signal processing circuits.

Place, publisher, year, edition, pages
AIP Publishing, 2025
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:kth:diva-362266 (URN)10.1063/5.0255241 (DOI)001454512800007 ()2-s2.0-105001205836 (Scopus ID)
Note

QC 20250416

Available from: 2025-04-09 Created: 2025-04-09 Last updated: 2025-07-01Bibliographically approved
3. Ferromagnetic resonance in Y3AlFe4O12 garnets
Open this publication in new window or tab >>Ferromagnetic resonance in Y3AlFe4O12 garnets
Show others...
2025 (English)In: Journal of Low Temperature Physics, ISSN 0022-2291, E-ISSN 1573-7357Article in journal (Refereed) Accepted
Abstract [en]

Spin dynamics in Al-substituted yttrium iron garnets is investigated using broadband ferromagnetic resonance measurements in the temperature range T=200-360 K. Using the measured data, the resonance field and linewidth as well as their temperature dependence are determined, with implications for the uniformity and overall quality of the samples prepared via different chemical fabrication routes. These key parameters governing the spin dynamics in the material are important for its applications in high-speed spintronic and magnonic devices.

Place, publisher, year, edition, pages
Springer Nature, 2025
Keywords
Ferromagnetic resonanse, Al-substituted garnets, YIG
National Category
Nanotechnology for Material Science
Identifiers
urn:nbn:se:kth:diva-365909 (URN)
Note

QC 20250703

Available from: 2025-07-01 Created: 2025-07-01 Last updated: 2025-07-03Bibliographically approved
4. Antiferromagnetic coupling between martensitic twin variants observed by magnetic resonance in Ni-Mn-Sn-Co films
Open this publication in new window or tab >>Antiferromagnetic coupling between martensitic twin variants observed by magnetic resonance in Ni-Mn-Sn-Co films
Show others...
2017 (English)In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 95, no 2, article id 024422Article in journal (Refereed) Published
Abstract [en]

Magnetic properties of N⁢i46.0⁢M⁢n36.8⁢S⁢n11.4⁢C⁢o5.8/MgO⁡(001) epitaxial thin film, which undergo a martensitic phase transformation from cubic austenitic phase to a twinned orthorhombic martensitic phase at 270 K, were studied by the magnetic resonance at the microwave frequency of 9.45 GHz. It was found that the single resonance line observed in the austenite splits into three lines in the martensitic phase. A theoretical approach was developed to show that the additional resonance lines are caused by the weak antiferromagnetic coupling of the ferromagnetic twin components across twin boundaries. Fitting of the experimental resonance lines to model gives an effective field of antiferromagnetic coupling of about 1.5 kOe, which is two or three orders of magnitude lower than in the conventional antiferromagnetic solids because the number of magnetic ions interacting antiferromagnetically through the twin boundary is much less than the total number of magnetic ions in the twin. This feature shows a strong resemblance between the submicron twinned martensite and artificial antiferromagnetic superlattices, whereby providing a distinctive insight into magnetism of the studied magnetic shape memory material.

Place, publisher, year, edition, pages
American Physical Society (APS), 2017
Keywords
Magnetic order, magnetic phase transitions, magnetism, functional materials, thin films, ferromagnetic resonance
National Category
Nanotechnology for Material Science
Identifiers
urn:nbn:se:kth:diva-365906 (URN)10.1103/physrevb.95.024422 (DOI)000398728100007 ()2-s2.0-85010383413 (Scopus ID)
Available from: 2025-07-01 Created: 2025-07-01 Last updated: 2025-07-01Bibliographically approved
5. Thickness dependences of structural and magnetic properties of Ni(Co)MnSn/MgO(001) thin films
Open this publication in new window or tab >>Thickness dependences of structural and magnetic properties of Ni(Co)MnSn/MgO(001) thin films
Show others...
2021 (English)In: Journal of Alloys and Compounds, ISSN 0925-8388, E-ISSN 1873-4669, Vol. 862, article id 158474Article in journal (Refereed) Published
Abstract [en]

The influence of film thickness on the formation of twinning structure, martensitic transformation and magnetoelastic properties of epitaxial films of Ni(Co)MnSn magnetic shape memory alloy is investigated by means of ferromagnetic resonance spectroscopy, synchrotron X-ray diffraction and standard magnetic measurements. It is found that constraints from the film/substrate interface block the martensitic transformation in the 20 nm thick film. The increase of the film thickness results in a progressive stress relaxation and, as a result, the martensitic transformation becomes possible starting from 50 nm. Twinning of the films is required to conserve the films surface area. The elastic energy balance between the film/substrate interface and the twin boundaries leads to the formation of a submicron wide, stripe like, periodical structure of twins, which is of interest for spintronic or magnonic applications. The width of the twin variants increases with the film thickness growth, resulting in the dramatic modification of magnetic properties.

Place, publisher, year, edition, pages
Elsevier BV, 2021
Keywords
Magnetic shape memory alloys, Twin structure, Martensitic transformation, Magnetic electron spin resonance
National Category
Nanotechnology for Material Science
Identifiers
urn:nbn:se:kth:diva-365907 (URN)10.1016/j.jallcom.2020.158474 (DOI)000624934000073 ()2-s2.0-85099627232 (Scopus ID)
Note

QC 20250701

Available from: 2025-07-01 Created: 2025-07-01 Last updated: 2025-07-01Bibliographically approved
6. Room- and low-temperature magnetic parameters of Y3AlFe4O12 garnets
Open this publication in new window or tab >>Room- and low-temperature magnetic parameters of Y3AlFe4O12 garnets
Show others...
2025 (English)In: Journal of Alloys and Compounds, ISSN 0925-8388, E-ISSN 1873-4669, Vol. 1010, article id 178320Article in journal (Refereed) Published
Abstract [en]

Magnetic properties of Y3AlFe4O12 garnet ceramics have been studied over a wide range of temperature (3 – 370 K) and magnetic fields (up to 2 kOe). Effects of varying the temperature on some of the application-specific magnetic characteristics have been analyzed in detail. With the decrease in temperature, the effective anisotropy constant, KEff, is found to sharply rise below ∼150 K, while the saturation magnetization, Ms, changes only slightly (<20 % within 3 – 250 K). The exchange stiffness, Aex, and spin wave stiffness, D, parameters mirror the relatively smooth behavior of the magnetization at low temperatures but display a rapid drop when T approaches TC ≈ 436 K. The temperature dependence of the domain wall thickness and the critical single-domain size correlate with the corresponding values for pure Y3Fe5O12 (YIG) and are in agreement with the theoretical estimates. We conclude by discussing the ways of how to use the obtained results for tailoring the magnetic properties of YIG-based materials for technological applications.

Place, publisher, year, edition, pages
Elsevier BV, 2025
Keywords
Al-doped yttrium iron garnets, Domain structure, Ferrimagnetic ordering, Magnetic parameters, Spin wave stiffness, Temperature effects
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:kth:diva-358268 (URN)10.1016/j.jallcom.2024.178320 (DOI)001422742500001 ()2-s2.0-85213567787 (Scopus ID)
Note

QC 20250303

Available from: 2025-01-08 Created: 2025-01-08 Last updated: 2025-07-01Bibliographically approved

Open Access in DiVA

fulltext(68746 kB)135 downloads
File information
File name FULLTEXT01.pdfFile size 68746 kBChecksum SHA-512
f99d91846cdc23b43ce92695ed7395d1dd67ea6da32578c86bf1d7f65e8670d7ec7ac0a708d918eb426aa57012221a3e5d303309ae53bfd6af11d1a0280d67a9
Type fulltextMimetype application/pdf

Authority records

Popadiuk, Dariia

Search in DiVA

By author/editor
Popadiuk, Dariia
By organisation
Quantum and Nanostructure Physics
Nanotechnology for Material Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 135 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 150 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf