Catalytic Reduction of CO₂ into Solid Carbon
2025 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE credits
Student thesis
Abstract [sv]
Denna avhandling undersöker möjligheterna och effektiviteten hos katalytisk reduktion av koldioxid (CO₂) till fast kol genom en dubbelreaktor-Boschprocess. Drivkraften bakom detta arbete är det växande globala fokuset på avkarboniseringsstrategier, med särskild betoning på tekniker som inte bara fångar in utan även omvandlar koldioxid till värdefulla produkter. En omfattande litteraturstudie och simuleringar i ASPEN Plus genomfördes för att identifiera optimala driftparametrar, val av katalysatorer och processdesign. Dessa simuleringar gav förutsägande insikter i reaktorernas beteende, vilket möjliggjorde effektiv justering av parametrar och minimerade behovet av fysiska testcykler. Den teoretiska modellen validerades genom en experimentell uppställning i laboratorieskala vid Swerim AB, där en omvänd vatten-gas-skift-reaktor (RWGSR) och en kolbildningsreaktor (CFR) användes med nickel- respektive koboltkatalysatorer. Experimentella resultat bekräftade bildningen av fast kol, där svepelektronmikroskopi (SEM) visade mikrorörliknande kolstrukturer, vilket verifierade katalysatoreffektivitet och reaktionsbetingelser. Trots tekniska utmaningar såsom reaktorblockering och gasläckage visar studien på teknikens potential för industriell koldioxidinfångning och -användning (CCU). En reviderad process föreslogs med fokus på CO₂-konvertering och energioptimering, vilket visade förbättrad effektivitet genom massa- och energibalansberäkningar. Denna omdesign utnyttjar återvinningsslingor och gaskonditioneringsstrategier för att minska väteförbrukningen samtidigt som kolutbytet per enhet CO₂ maximeras. Resultaten understryker potentialen för skalbara och hållbara vägar för koldioxidreduktion, med betydelse för klimatarbete och framtida slutna livsuppehållande system.
Abstract [en]
This thesis investigates the feasibility and effectiveness of catalytic reduction of CO₂ into solid carbon through a dual-reactor Bosch process. The motivation behind this research stems from the increasing global emphasis on decarbonization strategies, with particular focus on technologies that not only capture but also convert carbon dioxide into value-added products. A comprehensive literature review and ASPEN Plus simulations were conducted to identify optimal operating parameters, catalyst selection, and process design. These simulations provided predictive insights into reactor behavior, enabling efficient parameter tuning and minimizing the number of required physical iterations. The theoretical model was validated through a lab-scale experimental setup at Swerim AB, which employed a reverse water-gas shift reactor and a carbon formation reactor using nickel and cobalt catalysts, respectively. Experimental results confirmed the production of solid carbon, with scanning electron microscopy revealing carbon microtube-like structures, validating catalyst efficiency and reaction conditions. Despite technical challenges such as reactor blockage and gas leakage, the study demonstrates the potential of this technology for industrial carbon capture and utilization. A revised process was proposed to prioritize CO₂ conversion and energy optimization, showing improved efficiency through mass and energy balances. This redesign leverages recycle loops and gas conditioning strategies to reduce hydrogen consumption while maximizing carbon yield per unit of CO₂. The findings underscore the potential for scalable and sustainable carbon reduction pathways, contributing to climate change mitigation efforts and future closed-loop life support systems.
Place, publisher, year, edition, pages
2025. , p. 78
Series
TRITA-ITM-EX ; 2025:296
Keywords [en]
CO2, Reduction, Carbon, ASPEN
Keywords [sv]
CO₂, reduktion, kol, ASPEN
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:kth:diva-366137OAI: oai:DiVA.org:kth-366137DiVA, id: diva2:1981406
Subject / course
Thermal Engineering
Educational program
Master of Science - Innovative Sustainable Energy Engineering
Supervisors
Examiners
2025-07-042025-07-04