kth.sePublikationer KTH
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Scalable Fabrication of Micro-Supercapacitors via Direct Patterning: From Material Design towards On-Chip Integration
KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Elektronik och inbyggda system.ORCID-id: 0009-0008-3459-3138
2025 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The rapid advancement of miniaturized electronics demands compact, high-performance on-chip energy storage with seamless integration. Printed micro-supercapacitors (MSCs) are promising candidates, offering high power density, long cycle life, and inherent compatibility with planar integration. Direct printing techniques like direct ink writing (DIW) and direct laser patterning (DLP) enable flexible design, material versatility, scalability, and high precision on-chip integration. However, realizing miniaturized MSCs that combine high electrochemical performance, scalability, environmental versatility and seamless on-chip fabrication remains challenging. Key obstacles include developments of high-performance material design and well-defined patterning strategies. 

Part I of this thesis enhances MSC performance and printing scalability using DIW. The first work developed a doped PEDOT:PSS electrode ink with optimized rheology and electrochemical properties, enabling fully printed compact 100-cells MSC arrays on paper substrate with high capacitance, ultrahigh-rate capability, and an extended operating voltage window (up to 160 V) for efficient instantaneous electricity storage. The second work significantly improves thermal stability through a DIW-printable bassanite framework combined with ionic liquid electrolytes, enabling the MSC array a long-term cycling at a record temperature of 300 °C. These advances demonstrate ink formulation designs for DIW enabled scalable fabrication of high-rate, robust MSC array capable of operating across diverse application environments.

Part II of this thesis improves on-chip MSC performance and integration based on DLP approach. The third work utilized DLP in hydrogen silsesquioxane (HSQ) to directly fabricate 3D hierarchical inorganic electrodes with self-formed nanogratings. Based on this structure, a compact on-chip MSCs with exceptional rate performance was fabricated with high-rate performance of 1 mF cm-2 at 50 V s-1 and high temperature stability up to 200 °C. The fourth work further using the 3D nanograting printing approach tailored on-chip MSC electrode microstructures to achieve high-frequency line-filtering up to 10 kHz. The precise fabrication of 3D standing nanograting structure provides large open surface area, facilitating fast ion transport, resulting in highly compact on-chip MSC with the highest reported areal capacitance of 0.32 mF cm-2 at 10 kHz, thereby enabling effective filtering applications and further advancing the miniaturization of capacitors in microelectronic systems. These results establish DLP as a powerful approach for the high-precision construction of on-chip 3D structures and pave the way for integration of ultra-compact MSCs into miniaturized electronic systems for high-frequency applications.

Abstract [sv]

Den snabba utvecklingen av miniatyriserad elektronik ställer krav på kompakt, högpresterande energilagring på chip med sömlös integration. Tryckta mikrosuperkondensatorer (MSCs) är lovande kandidater då de erbjuder hög effekttäthet, lång cykellivslängd och inneboende kompatibilitet med plan integration. Direkta trycktekniker såsom direct ink writing (DIW) och direct laser patterning (DLP) möjliggör flexibel design, materialmångfald, skalbarhet och högprecis integrering på chip. Att realisera miniatyriserade MSC:er som kombinerar hög elektrokemisk prestanda, skalbarhet, miljömässig mångsidighet och sömlös integration på chip är dock fortfarande en utmaning. Centrala hinder är utvecklingen av högpresterande materialdesign samt väldefinierade mönstringsstrategier.

Del I av denna avhandling förbättrar MSC-prestanda och tryckbar skalbarhet med hjälp av DIW. Det första arbetet utvecklade ett dopat PEDOT:PSS-elektrodbläck med optimerad reologi och elektrokemiska egenskaper, vilket möjliggjorde fullständigt tryckta, kompakta 100-cells MSC-arrayer på papperssubstrat med hög kapacitans, ultrahög laddnings-/urladdningshastighet samt ett utökat driftspänningsfönster (upp till 160 V) för effektiv omedelbar energilagring av elektricitet. I den andra studien förbättrades den termiska stabiliteten avsevärt genom en DIW-printbar bassanitram kombinerad med jonvätskeelektrolyter, vilket möjliggjorde långtidscykling av MSC-arrayer vid en rekordtemperatur på 300 °C. Dessa framsteg visar på bläckformuleringsdesigner för DIW som möjliggör skalbar tillverkning av högfrekventa, robusta MSC-arrayer kapabla att fungera i varierande applikationsmiljöer.

Del II av denna avhandling förbättrar prestanda och integrering av MSC:er på chip baserat på DLP-metoden. I den tredje studien användes DLP i hydrogen silsesquioxane (HSQ) för att direkt tillverka 3D-hierarkiska oorganiska elektroder med självorganiserade nanogitter. Baserat på denna struktur framställdes kompakta MSC:er på chip med exceptionell frekvensprestanda, uppvisande en arealkapacitans på 1 mF cm⁻² vid 50 V s⁻¹ och hög temperaturstabilitet upp till 200 °C. I den fjärde studien vidareutvecklades 3D-nanogitterstrategin för att skräddarsy MSC-elektroders mikrostrukturer på chip och därigenom uppnå högfrekvent linjefiltrering upp till 10 kHz. Den precisa framställningen av stående 3D-nanogitterstrukturer ger en stor öppen yta, vilket underlättar snabb jontransport och resulterar i en mycket kompakt MSC på chip med den högsta rapporterade arealkapacitansen, 0,32 mF cm⁻² vid 10 kHz. Detta möjliggör effektiva filtreringsapplikationer och driver ytterligare miniatyriseringen av kondensatorer i mikroelektroniska system. Dessa resultat etablerar DLP som en kraftfull metod för högprecisionskonstruktion av 3D-strukturer på chip och för integrering av ultrakompakta MSC:er i miniatyriserade elektroniska system för högfrekventa applikationer.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2025. , s. xii, 85
Serie
TRITA-EECS-AVL ; 2025:89
Nyckelord [en]
Micro-supercapacitors, direct ink writing, direct laser patterning, functional inks, scalable fabrication, miniaturized electronics, Line-Filtering.
Nationell ämneskategori
Annan elektroteknik och elektronik
Forskningsämne
Elektro- och systemteknik
Identifikatorer
URN: urn:nbn:se:kth:diva-371116ISBN: 978-91-8106-415-5 (tryckt)OAI: oai:DiVA.org:kth-371116DiVA, id: diva2:2003743
Disputation
2025-10-29, F3, Lindstedtvägen 26, Stockholm, 10:00 (Engelska)
Opponent
Handledare
Anmärkning

QC 20251006

Tillgänglig från: 2025-10-06 Skapad: 2025-10-04 Senast uppdaterad: 2025-10-14Bibliografiskt granskad
Delarbeten
1. Ultrafast metal-free microsupercapacitor arrays directly store instantaneous high-voltage electricity from mechanical energy harvesters
Öppna denna publikation i ny flik eller fönster >>Ultrafast metal-free microsupercapacitor arrays directly store instantaneous high-voltage electricity from mechanical energy harvesters
Visa övriga...
2024 (Engelska)Ingår i: Advanced Science, E-ISSN 2198-3844, Vol. 11, nr 22Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Harvesting renewable mechanical energy is envisioned as a promising and sustainable way for power generation. Many recent mechanical energy harvesters are able to produce instantaneous (pulsed) electricity with a high peak voltage of over 100 V. However, directly storing such irregular high-voltage pulse electricity remains a great challenge. The use of extra power management components can boost storage efficiency but increase system complexity. Here utilizing the conducting polymer PEDOT:PSS, high-rate metal-free micro-supercapacitor (MSC) arrays are successfully fabricated for direct high-efficiency storage of high-voltage pulse electricity. Within an area of 2.4 × 3.4 cm2 on various paper substrates, large-scale MSC arrays (comprising up to 100 cells) can be printed to deliver a working voltage window of 160 V at an ultrahigh scan rate up to 30 V s−1. The ultrahigh rate capability enables the MSC arrays to quickly capture and efficiently store the high-voltage (≈150 V) pulse electricity produced by a droplet-based electricity generator at a high efficiency of 62%, significantly higher than that (<2%) of the batteries or capacitors demonstrated in the literature. Moreover, the compact and metal-free features make these MSC arrays excellent candidates for sustainable high-performance energy storage in self-charging power systems.

Ort, förlag, år, upplaga, sidor
Wiley, 2024
Nationell ämneskategori
Energiteknik
Identifikatorer
urn:nbn:se:kth:diva-339847 (URN)10.1002/advs.202400697 (DOI)001187293000001 ()38502870 (PubMedID)2-s2.0-85188068556 (Scopus ID)
Anmärkning

QC 20231122

Tillgänglig från: 2023-11-21 Skapad: 2023-11-21 Senast uppdaterad: 2025-10-06Bibliografiskt granskad
2. Liquid‐Locked Bassanites for Scalable Fabrication of High‐Temperature Micro‐Supercapacitors Working at 300 °C
Öppna denna publikation i ny flik eller fönster >>Liquid‐Locked Bassanites for Scalable Fabrication of High‐Temperature Micro‐Supercapacitors Working at 300 °C
Visa övriga...
2025 (Engelska)Ingår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, artikel-id e10592Artikel i tidskrift (Refereegranskat) Epub ahead of print
Abstract [en]

Many emerging industry applications demand electronic systems with reliable operation at temperatures >300 °C. To date, the most promising on‐chip power sources, micro‐supercapacitors (MSCs), can only operate at temperatures up to 250 °C for a short period as limited by the vulnerability of their electrolyte frameworks at high temperatures. Here, a strategy is proposed to use liquids to lock the phase transformations of bassanite microrods for scalable on‐chip printing of interlocking ceramic frameworks with high thermal stability. The robust ceramic frameworks enable simple yet scalable fabrication of MSCs to work at 300 °C with an areal capacitance of up to >60 mF cm −2 and only ≈3% performance degradation after 1000 cycles during a test period of ≈3 h. A large‐scale MSC array, consisting of 20 cells within a footprint area of 4 cm × 8 cm, has been able to supply a power of 7.2 mW at 300 °C. These break through the present limit of 250 °C of almost all high‐temperature energy storage devices and pave the way for on‐chip MSCs for high‐temperature electronics.

Ort, förlag, år, upplaga, sidor
Wiley, 2025
Nationell ämneskategori
Teknik och teknologier Teknik
Forskningsämne
Elektro- och systemteknik
Identifikatorer
urn:nbn:se:kth:diva-371113 (URN)10.1002/adfm.202510592 (DOI)001526779400001 ()2-s2.0-105010520884 (Scopus ID)
Forskningsfinansiär
Energimyndigheten, 2022‐06725
Anmärkning

QC 20251006

Tillgänglig från: 2025-10-03 Skapad: 2025-10-03 Senast uppdaterad: 2025-11-13Bibliografiskt granskad
3. 3D Printing of Hierarchical Structures Made of Inorganic Silicon-Rich Glass Featuring Self-Forming Nanogratings
Öppna denna publikation i ny flik eller fönster >>3D Printing of Hierarchical Structures Made of Inorganic Silicon-Rich Glass Featuring Self-Forming Nanogratings
Visa övriga...
2024 (Engelska)Ingår i: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 18, nr 43, s. 29748-29759Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Hierarchical structures are abundant in nature, such as in the superhydrophobic surfaces of lotus leaves and the structural coloration of butterfly wings. They consist of ordered features across multiple size scales, and their advantageous properties have attracted enormous interest in wide-ranging fields including energy storage, nanofluidics, and nanophotonics. Femtosecond lasers, which are capable of inducing various material modifications, have shown promise for manufacturing tailored hierarchical structures. However, existing methods, such as multiphoton lithography and three-dimensional (3D) printing using nanoparticle-filled inks, typically involve polymers and suffer from high process complexity. Here, we demonstrate the 3D printing of hierarchical structures in inorganic silicon-rich glass featuring self-forming nanogratings. This approach takes advantage of our finding that femtosecond laser pulses can induce simultaneous multiphoton cross-linking and self-formation of nanogratings in hydrogen silsesquioxane. The 3D printing process combines the 3D patterning capability of multiphoton lithography and the efficient generation of periodic structures by the self-formation of nanogratings. We 3D-printed micro-supercapacitors with large surface areas and a high areal capacitance of 1 mF/cm<sup>2</sup> at an ultrahigh scan rate of 50 V/s, thereby demonstrating the utility of our 3D printing approach for device applications in emerging fields such as energy storage.

Ort, förlag, år, upplaga, sidor
American Chemical Society (ACS), 2024
Nyckelord
additive manufacturing, cross-linking, femtosecond laser direct writing, glass, hydrogen silsesquioxane (HSQ), laser-induced periodic structure, micro-supercapacitor
Nationell ämneskategori
Materialkemi
Identifikatorer
urn:nbn:se:kth:diva-366356 (URN)10.1021/acsnano.4c09339 (DOI)001335838300001 ()39383314 (PubMedID)2-s2.0-85206478719 (Scopus ID)
Anmärkning

QC 20250707

Tillgänglig från: 2025-07-07 Skapad: 2025-07-07 Senast uppdaterad: 2025-10-08Bibliografiskt granskad
4. 3D Printed On-chip Micro-Supercapacitor with Tunable Nanograting Structure for 10kHz Line-Filtering
Öppna denna publikation i ny flik eller fönster >>3D Printed On-chip Micro-Supercapacitor with Tunable Nanograting Structure for 10kHz Line-Filtering
Visa övriga...
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

The demand for miniaturized electronics has created a need for compact, high-performance on-chip power sources. Micro supercapacitors (MSCs) have emerged as promising candidates for on-chip filtering applications due to their high specific capacitance and on-chip integrity. However, most existing MSCs suffer from significant capacitance attenuation at high frequencies, limiting their effectiveness in modern electronic circuits operating above 10 kHz. This study addresses this challenge by developing a printed on-chip MSC with open-through nanograting electrode microstructure using a high-resolution 3D printing technique. The resulting 3D nanograting structure enables on-chip MSC high capacitance while facilitating rapid ion transport, crucial for maintaining high-frequency performance. Consequently, the on-chip MSC demonstrates an ultra-compact footprint of 0.048 mm2, about 260 time smaller than conventional aluminum electrolytic capacitor (AEC), while offering two-order higher areal capacitance of 1.2 mF cm-² at 1 kHz, and retain 0.32 mF cm-² at 10 kHz. This performance is twice as large as the highest value reported among state-of-the-art. The nanograting MSC simultaneously offers both high capacitance and excellent frequency response in a compact form factor, enabling effective line-filtering up to 10 kHz and provides promising potential for miniaturized, high-frequency line-filtering applications in advanced electronic systems.

Nationell ämneskategori
Annan elektroteknik och elektronik
Forskningsämne
Elektro- och systemteknik
Identifikatorer
urn:nbn:se:kth:diva-371118 (URN)
Anmärkning

QC 20251003

Tillgänglig från: 2025-10-03 Skapad: 2025-10-03 Senast uppdaterad: 2025-10-04Bibliografiskt granskad

Open Access i DiVA

fulltext(5859 kB)102 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 5859 kBChecksumma SHA-512
e42ceb5ae16f5bdc636ce3beeac27bcd6f216223d9b61bc56c9ee496486a03539490bb1ede2909d43fda150b78834d6bf4e881fe687e7dfa1cd7577d6ced2ce0
Typ fulltextMimetyp application/pdf

Person

Chen, Shiqian

Sök vidare i DiVA

Av författaren/redaktören
Chen, Shiqian
Av organisationen
Elektronik och inbyggda system
Annan elektroteknik och elektronik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 1616 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf