kth.sePublikationer KTH
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Silicon-Micromachined High-Gain Antennas and Beamforming Architectures for Sub-Terahertz Communication and Sensing
KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Mikro- och nanosystemteknik. (RF-THz)ORCID-id: 0000-0002-3961-2421
2025 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Hållbar utveckling
SDG 11: Hållbara städer och samhällen
Abstract [en]

The increasing demands for high-speed wireless communication, intelligent sensing, and high-resolution imaging have driven interest toward the underutilized sub-terahertz (sub-THz) frequency spectrum. This region offers large bandwidths and high spatial resolution, making it a promising candidate for next-generation communication and sensing systems. However, realizing practical sub-THz systems presents several challenges, including severe path loss, low power efficiency, and significant hardware complexity due to frequency-dependent losses and fabrication constraints.

This thesis addresses these challenges by proposing a set of passive, highperformance components and system-level architectures focused on antenna design, beamforming techniques, channel modeling, and imaging methods. These components are fabricated using silicon micromachining, a scalable technology that enables the realization of compact, high-frequency passive structures with low loss and micrometer feature size. The thesis begins by developing a ray-tracing-based statistical channel model that captures essential propagation phenomena, including molecular absorption, reflection,scattering, and diffraction. The model evaluates the root-mean-square delay spread, coherence bandwidth, and subchannel stability under varying link distances, antenna gains, and misalignment scenarios. The results reveal that higher-frequency bands exhibit reduced delay spread variability and allow for more robust multi-carrier communication through channel bonding, forming the foundation for hardware-aware THz link design.

Two high-gain silicon micromachined lens antennas are introduced next. The first design is an elliptical Fresnel zone planar lens antenna that achieves circular polarization across the 500–750 GHz band. The return loss remains better than -15 dB across this range, with a measured gain of 25.7 dBi and an axial ratio below 2.5. The second design uses a circular Fresnel lens enhanced by a graded-index dielectric perforated disc, fabricated using DRIE on a silicon-on-insulator wafer. With 13 optimized Fresnel zones, this antenna achieves 35.9 dBi gain and maintains circular polarization with an axial ratio below 2.8 dB across 40% bandwidth. These antennas demonstrate state-ofthe-art performance in compact, planar form factors. Specifically, a single silicon wafer is etched on both sides using deep reactive ion etching (DRIE)and two lithographic masks, forming structures with fixed thickness and precise vertical profiles. This makes the fabrication process simple for purely dielectric-based lens antennas.

To address the limitations of wideband beamforming at sub-THz, the thesis presents a spatial-spreading approach using frequency-orthogonal passive beam steering. A multi-feed Fresnel lens system is designed to steer each frequency sub-band into a distinct spatial direction. Using four feeds and 75 GHz of total bandwidth, 16 beams are generated to cover a 32° field of view.

Experimental results show only 0.9dB steering loss, sidelobe suppression below –22dB, and a realized gain of 32.1 dBi. The lens is compact (15.8×15.8 mm, 526 μm thick) and requires only a single RF chain per feed, significantly reducing system complexity. The spatial-spreading antenna is then paired with a convolutional neural network for adaptive beam and power allocation. The CNN estimates user location using amplitude-only received signal features and dynamically assigns beam and transmit power. The system achieves up to 61% improvement in direction-of-arrival estimation accuracy, a 94% increase in data rate, and a 30% reduction in transmit power compared to static strategies.

The final chapter investigates the effect of antenna dispersion in wideband imaging. A comparison between silicon lens and metallic horn antennas reveals that the former enables higher effective bandwidth and preserves the time-domain pulse shape. Experimental results show that lens-based antennas reduce range and cross-range localization errors by up to 64% and 68%, respectively, and improve signal-to-clutter ratio by 2.7 dB. The system achieves millimeter-level resolution and resolves targets as close as 2mm in cross-range and 3mm in range.

Using this insight, a full imaging system is demonstrated by combining frequencyorthogonal beams and a time-reversal DORT algorithm. The system reconstructs images of multiple targets without mechanical scanning. Experimental reconstructions verify resolution of 0.6 mm-radius objects and accurate discrimination between targets spaced only 2mm apart, affirming the impact of dispersion-aware design for high-resolution THz imaging.

The thesis demonstrates how silicon-micromachined, high-gain antennas and passive beamforming can be effectively combined with machine learning and wideband imaging strategies to address key limitations in sub-THz systems. The proposed components are validated across communication and sensing contexts, establishing a robust framework for compact, scalable THz frontend architectures.

Abstract [sv]

De ökande behoven av högkapacitets trådlös kommunikation, intelligent avkänning och högupplöst avbildning har drivit intresset mot det underutnyttjade sub-terahertz (sub-THz) frekvensområdet. Detta område erbjuder stora bandbredder och hög rumslig upplösning, vilket gör det till en lovande kandidat för nästa generations kommunikations- och sensorsystem. Realiseringen av praktiska sub-THz-system medför dock flera utmaningar, inklusive kraftiga förluster i fri rymd, låg energieffektivitet och betydande hårdvarukomplexitet på grund av frekvensberoende förluster och tillverkningsbegränsningar.

Denna avhandling tar itu med dessa utmaningar genom att föreslå en uppsättning passiva, högpresterande komponenter och systemarkitekturer med fokus på antenndesign, strålformningstekniker, kanalkarakterisering och avbildningsmetoder. Komponenterna tillverkas med kiselmikromekanik, en skalbar teknik som möjliggör kompakta, högfrekventa passiva strukturer med låg förlust och mikrometerskala.

Avhandlingen inleds med utvecklingen av en statistisk kanalmodell baserad på strålspårning som fångar upp centrala propagationsfenomen, inklusive molekylär absorption, reflektion, spridning och diffraktion. Modellen används för att utvärdera root-mean-square-fördröjningsspridning, koherensbandbredd och delkanalers stabilitet vid olika länklängder, antennvinster och feljusteringar. Resultaten visar att högre frekvensband ger lägre variation i fördröjningsspridning och möjliggör mer robust flerbärarkommunikation genom kanalkoppling, vilket utgör grunden för hårdvaruanpassad THz-länkutformning.

Därefter introduceras två högvinst-linsantenner tillverkade med kiselmikromekanik. Den första designen är en elliptisk Fresnel-zonlins som uppnår cirkulär polarisation över 500–750GHz-bandet. Returförlusten är bättre än –15dB över hela bandet, med en uppmätt vinst på 25,7dBi och en axialkvot under 2,5. Den andra designen använder en cirkulär Fresnel-lins förbättrad med en graderad dielektrisk perforerad skiva, även den tillverkad med djupreaktiv jonetsning (DRIE) på ett SOI-substrat. Med 13 optimerade Fresnel-zoner uppnår denna antenn en vinst på 35,9dBi och bibehåller cirkulär polarisation med en axialkvot under 2,8dB över 40% bandbredd. Dessa antenner uppvisar topprestanda i kompakta, plana formfaktorer. I synnerhet etsas ett enda kiselchip från båda sidor med DRIE och två litografimasker, vilket skapar strukturer med fast tjocklek och exakt vertikal profil, vilket förenklar tillverkningen av rent dielektriska linsantenner.

För att hantera begränsningarna i bredbands-strålformning vid sub-THzfrekvenser presenterar avhandlingen en spatial-spridningsmetod baserad på frekvensortogonal passiv strålstyrning. Ett multifött Fresnel-linssystem är utformat för att styra varje frekvenssubband i en unik riktning. Med fyra matningar och totalt 75GHz bandbredd genereras 16 strålar som täcker ett synfält på 32°. Experimentella resultat visar endast 0,9dB styrförlust, sidlobdämpning bättre än –22dB och en realiserad vinst på 32,1dBi. Linsen är kompakt (15,8×15,8mm, 526μm tjock) och kräver endast en RF-kedja per matning, vilket kraftigt reducerar systemkomplexiteten.

Den spatiala spridningsantennen kombineras därefter med ett konvolutionellt neuronnät för adaptiv strål- och effektallokering. Genom att använda endast amplitudbaserade mottagarsignaler uppskattar nätverket användarens position och tilldelar dynamiskt optimal stråle och sändareffekt. Systemet uppnår upp till 61% förbättrad noggrannhet i riktninguppskattning, 94% ökning i datatakt och 30% minskning i sändareffekt jämfört med statiska strategier.

Avhandlingens sista kapitel undersöker effekten av antenndispersion i bredbandsavbildning. En jämförelse mellan kiselbaserade linser och metallhornantenner visar att de förra möjliggör högre effektiv bandbredd och bevarar pulsformen i tidsdomänen. Experimentella resultat visar att linsantenner minskar fel i avstånds- och tvärlägeslokalisering med upp till 64% respektive 68% och förbättrar signal-till-störförhållandet med 2,7dB. Systemet uppnår millimeterupplösning och kan särskilja mål med 2mm avstånd i sidled och 3mm i längsled.

Med dessa insikter demonstreras ett komplett bildsystem som kombinerar frekvensortogonala strålar och en tidsreversalbaserad DORT-algoritm. Systemet rekonstruerar flera mål utan mekanisk skanning. Experimentellaåteruppbyggnader bekräftar en upplösning på 0,6mm och korrekt identifiering av objekt separerade med endast 2mm, vilket visar på effekten av dispersionsanpassad design för högupplöst THz-avbildning.

Sammanfattningsvis visar avhandlingen hur kiselmikromekaniska högvinstantenner och passiv strålformning effektivt kan kombineras med maskininlärning och bredbandsavbildning för att hantera centrala begränsningar i sub-THz-system. De föreslagna komponenterna valideras i både kommunikations-och sensorsammanhang, och etablerar en solid grund för kompakta och skalbara THz-fronter.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2025. , s. xii, 104
Serie
TRITA-EECS-AVL ; 2025:78
Nyckelord [en]
THz Antenna, Silicon Micromachining, THz sensing
Nyckelord [sv]
THz-antenn, kiselmikromekanik, THz-sensing
Nationell ämneskategori
Elektroteknik och elektronik
Identifikatorer
URN: urn:nbn:se:kth:diva-371159ISBN: 978-91-8106-368-4 (tryckt)OAI: oai:DiVA.org:kth-371159DiVA, id: diva2:2003921
Disputation
2025-11-04, https://kth-se.zoom.us/j/67152185433, F3, Lindstedtsvägen 22, 114 28 Stockholm, Stockholm, 09:00 (Engelska)
Opponent
Handledare
Anmärkning

QC 20251006

Tillgänglig från: 2025-10-06 Skapad: 2025-10-06 Senast uppdaterad: 2025-10-14Bibliografiskt granskad
Delarbeten
1. Channel bonding strategies for optimizing THz communication
Öppna denna publikation i ny flik eller fönster >>Channel bonding strategies for optimizing THz communication
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

This paper presents a new statistical channel model combining reflection, scattering, diffraction, and molecular absorption effects to evaluate the delay spread function for assessing THz multi-channel properties in indoor scenarios and deriving channel bonding strategies for optimizing THz communication. The proposed model examines the impact of operating frequency, transmission distance, line-of-sight conditions, antenna gain, and antenna misalignment. In contrast to expectations based on scattering behavior, it is found that the fractional subchannel bandwidth increases with frequency, allowing for the splitting of the overall bandwidth into fewer sub-channels than at lower-frequency bands. Furthermore, the sub-channels in higher-frequency bands are more robust since the worst-case-to-averageratio of the root-mean-square delay spread is reduced. The results also show that antenna misalignment is more critical at higher frequencies, even for the same antenna gain.

Nationell ämneskategori
Elektroteknik och elektronik
Forskningsämne
Telekommunikation
Identifikatorer
urn:nbn:se:kth:diva-371153 (URN)
Forskningsfinansiär
Stiftelsen för strategisk forskning (SSF)
Anmärkning

QC 20251007

Tillgänglig från: 2025-10-06 Skapad: 2025-10-06 Senast uppdaterad: 2025-10-07Bibliografiskt granskad
2. High-Gain Circularly Polarized 500-750 GHz Lens Antenna Enabled by Silicon Micromachining
Öppna denna publikation i ny flik eller fönster >>High-Gain Circularly Polarized 500-750 GHz Lens Antenna Enabled by Silicon Micromachining
2024 (Engelska)Ingår i: IEEE Transactions on Antennas and Propagation, ISSN 0018-926X, E-ISSN 1558-2221, Vol. 72, nr 5, s. 4077-4085Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

This paper introduces an innovative silicon-micromachined, low-profile, high-gain antenna designed for wideband performance in the whole 500-750 GHz waveguide band. The novel antenna concept is based on an elliptical Fresnel Zone planner lens with optimized distribution of the zone dimensions. Furthermore, without requiring any extra phase compensating components, the design ensures circular polarization, which was measured to an axial ratio of better than 2.5 over the whole waveguide band (40% fractional bandwidth). The measured gain ranges from 24.3 to 25.7 dBi, and the return loss is better than 15 dB over the whole 250 GHz band. The 8.25mm×7.62mm large and only 526 μm thick antenna can be directly mounted onto a standard WM-380 waveguide flange. The measured radiation patterns for circular polarization, the gain, the axial ratio, and the return loss are excellently matching the simulated antenna performance. This work shows that all-dielectric antennas at THz frequencies easily outperform metal-based designs due to drastically reduced loss with only -0.85dB average radiation efficiency in the overall frequency band.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE), 2024
Nyckelord
Lens Antenna, THz antenna, silicon micromachining, circularly polarized
Nationell ämneskategori
Telekommunikation
Identifikatorer
urn:nbn:se:kth:diva-345169 (URN)10.1109/tap.2024.3383289 (DOI)001217104500049 ()2-s2.0-85190173108 (Scopus ID)
Forskningsfinansiär
Stiftelsen för strategisk forskning (SSF), CHI19-0027
Anmärkning

QC 20240411

Tillgänglig från: 2024-04-08 Skapad: 2024-04-08 Senast uppdaterad: 2025-10-06Bibliografiskt granskad
3. Graded Index Silicon Micromachined Lens Antenna: Enabling 36-dBi Gain and Circular Polarization at 500–750 GHz
Öppna denna publikation i ny flik eller fönster >>Graded Index Silicon Micromachined Lens Antenna: Enabling 36-dBi Gain and Circular Polarization at 500–750 GHz
2025 (Engelska)Ingår i: IEEE Transactions on Antennas and Propagation, ISSN 0018-926X, E-ISSN 1558-2221, Vol. 73, nr 8, s. 6205-6210Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

This communication introduces a graded index (GRIN) Fresnel zone planar lens (FZPL) antenna operating with high gain in the 500–750-GHz frequency range. The main innovation involves achieving a gain of 35.9 dBi by incorporating a GRIN dielectric perforated disk. This perforated disk acts as a distributed spatial delay for beam focusing, ensuring gain improvement and circular polarization simultaneously without needing an extra polarizer. The antenna exhibits high efficiency, with an average radiation efficiency of −1.05 dB, achieved through the optimization of a modified FZPL for silicon-on-insulator (SOI) micromachining technology. The antenna maintains a return loss below −15 dB across the entire 500–750-GHz band, achieving a 40% fractional bandwidth, with circular polarization maintained and an axial ratio consistently below 2.8 dB. The fabricated chip, sized 12.18×12.18 mm with a thickness of 526 μ m, enhances practicality. The feeding arrangement involves a standard open waveguide, and direct mounting into a standard WM-380 waveguide flange is facilitated. This communication discusses the prototype’s design, fabrication, and measurement, emphasizing the excellent agreement between the antenna’s performance and simulated data.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE), 2025
Nyckelord
Lenses, Dielectrics, Gain, Antennas, Fresnel reflection, Indexes, Silicon, Delays, Terahertz radiation, Feeds
Nationell ämneskategori
Elektroteknik och elektronik
Identifikatorer
urn:nbn:se:kth:diva-369547 (URN)10.1109/tap.2025.3567447 (DOI)001551798100001 ()2-s2.0-105005186210 (Scopus ID)
Anmärkning

QC 20250910

Tillgänglig från: 2025-09-09 Skapad: 2025-09-09 Senast uppdaterad: 2025-10-06Bibliografiskt granskad
4. Passive Beam-Steering of High-Gain THz Planar Lens Antenna by Frequency-Orthogonal Spatial Spreading
Öppna denna publikation i ny flik eller fönster >>Passive Beam-Steering of High-Gain THz Planar Lens Antenna by Frequency-Orthogonal Spatial Spreading
2025 (Engelska)Ingår i: IEEE Transactions on Antennas and Propagation, ISSN 0018-926X, E-ISSN 1558-2221Artikel i tidskrift (Refereegranskat) Epub ahead of print
Abstract [en]

This paper presents the first demonstration of a high-gain planar THz lens antenna with beam-steering capability by frequency-orthogonal spatial spreading, operating in the 610–685 GHz range. The antenna is based on integrating a Fresnel zone planar lens with a graded-index silicon interposer. The concept enables passive beamforming of four simultaneous beams from a single feeding port, covering a field of view from -30° to -14° for 20 GHz bandwidth with a 4° separation of the beam direction. The beams can be swept continuously over that field of view by mapping the signal to different frequencies. Furthermore, when using four feeds, 16 simultaneous beams can be created, of which two frequency-orthogonal beams are separated by 40 GHz in frequency can be mapped into the same spatial direction. Thus, it is demonstrated that high-gain multibeam beam steering can be achieved without the hardware complexity of conventional phased-array antenna systems requiring a large number of RF chains. An antenna prototype is implemented using silicon micromachining, resulting in a compact 15.8 mm × 15.8 mm device with a thickness of 526μm, which is directly mounted on a standard WM-380 waveguide feed. Measurement results include a realized gain of 32.1 dBi, only a 0.8 dB beam steering loss across the field of view, an effective side-lobe suppression better than -22 dB, and a high radiation efficiency of -1.25 dB. The measurements are in excellent agreement with simulations, and the worst-case deviation of the measured beam direction from the simulated one is only 0.1° out of 16 beams.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE), 2025
Nyckelord
beam-steering, Graded Index, micromachined antenna, multibeam frequency-sweeping, silicon micromachining, Spatial spreading, THz Antenna
Nationell ämneskategori
Annan elektroteknik och elektronik Telekommunikation Signalbehandling
Identifikatorer
urn:nbn:se:kth:diva-368577 (URN)10.1109/TAP.2025.3589723 (DOI)2-s2.0-105011704500 (Scopus ID)
Anmärkning

QC 20250820

Tillgänglig från: 2025-08-20 Skapad: 2025-08-20 Senast uppdaterad: 2025-10-06Bibliografiskt granskad
5. Machine Learning-Driven Resource Allocation for Spatial-Spreading Antennas in Terahertz Communication Systems
Öppna denna publikation i ny flik eller fönster >>Machine Learning-Driven Resource Allocation for Spatial-Spreading Antennas in Terahertz Communication Systems
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

This paper introduces a novel framework that integrates spatial spreading beamforming antennas with machine learning (ML)-based direction-of-arrival (DOA) and range estimation for adaptive beam assignment and output power control in terahertz (THz) communication systems. Unlike conventional fixed-pattern beamforming approaches, the proposed method dynamically allocates optimal beam directions and transmission power by accurately estimating the receiver's direction and distance in real time through an ML-driven lookup table. A convolutional neural network (CNN)-based ML model is developed, trained with simulation-generated datasets, and validated through extensive channel emulations in SystemVue software. Experimental evaluations conducted in the frequency range of 610–675 GHz demonstrate significant performance enhancements, including around 30% reductions in total transmit power, improvements in total achievable data rates by up to94%, and substantial enhancements in DOA estimation accuracy, evidenced by a reduction of root mean square error (RMSE)by approximately 48.5% to 61%. These findings confirm the effectiveness of the proposed ML-based adaptive framework, highlighting its potential to enable efficient, high-capacity, and scalable THz wireless communication.

Nationell ämneskategori
Elektroteknik och elektronik
Forskningsämne
Telekommunikation
Identifikatorer
urn:nbn:se:kth:diva-371154 (URN)
Forskningsfinansiär
Stiftelsen för strategisk forskning (SSF)
Anmärkning

QC 20251007

Tillgänglig från: 2025-10-06 Skapad: 2025-10-06 Senast uppdaterad: 2025-10-07Bibliografiskt granskad
6. Investigating the Impact of Antenna Dispersion on Time Reversal Wideband THz Imaging Systems
Öppna denna publikation i ny flik eller fönster >>Investigating the Impact of Antenna Dispersion on Time Reversal Wideband THz Imaging Systems
2024 (Engelska)Ingår i: IEEE Transactions on Antennas and Propagation, ISSN 0018-926X, E-ISSN 1558-2221, Vol. 72, nr 11, s. 8375-8384Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

This article investigates the impact of antenna dispersion on wideband Terahertz (THz) imaging systems. It is demonstrated that the effective bandwidth is reduced from the nominal system bandwidth, and thus, the expected image resolution cannot be reached when the antenna system has inappropriate frequency dispersion characteristics. Besides a theoretical analysis and simulations, experiments were conducted using antennas with different dispersion characteristics in an ultra-wideband 500–750 GHz imaging setup to assess the impact on achievable resolution. When utilizing low dispersion dielectric-lens antennas, the system successfully detected multiple targets with a radius of 0.6 mm even when positioned at close distance (2 mm in cross-range and 3 mm in range). In contrast to that, when using higher dispersion horn antennas, the resolution of a dual-target scenario was reduced to 3 mm in cross-range and 4 mm in range. Furthermore, it is shown that the target position reconstruction accuracy, as well as the signal-to-clutter ratio (SCR), are also improved by 68% and 2.7 dB, respectively, when using low dispersion antennas in the same setup. This investigation, for the first time, highlights the importance of considering antenna dispersion for accurate image reconstruction, particularly for high-resolution wideband THz imaging systems.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE), 2024
Nationell ämneskategori
Telekommunikation
Forskningsämne
Elektro- och systemteknik
Identifikatorer
urn:nbn:se:kth:diva-357670 (URN)10.1109/tap.2024.3466473 (DOI)001347082100037 ()2-s2.0-85205912388 (Scopus ID)
Anmärkning

QC 20241213

Tillgänglig från: 2024-12-12 Skapad: 2024-12-12 Senast uppdaterad: 2025-10-06Bibliografiskt granskad
7. High-Resolution Time-Reversal THz Imaging Using Multi-Beam Spatial Spreading High-Gain Planar Lens Antennas
Öppna denna publikation i ny flik eller fönster >>High-Resolution Time-Reversal THz Imaging Using Multi-Beam Spatial Spreading High-Gain Planar Lens Antennas
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

This paper presents the first demonstration of a high-resolution terahertz (THz) imaging concept based on spatial spread beamforming, utilizing a fixed pair of high-gain silicon lens antennas operating in the 610–685 GHz frequency range. By combining frequency-orthogonal beams and a multibeam spatial spreading time-reversal DORT algorithm, the system eliminates the need for mechanical movement and active beamforming techniques, thus reducing hardware complexity while maintaining high imaging performance. The proposed method enables precise spatial focusing and angular resolutions in wideband THz. Comprehensively evaluating its effectiveness, the system’s performance is compared to that of a conventional circular antenna array, demonstrating that the proposed fixed-antenna configuration provides comparable imaging performance without requiring complex array setups.The study also investigates the impact of orthogonality on imaging accuracy, highlighting its role in image reconstruction quality. The concept’s effectiveness is validated through both simulations and experimental measurements . Results show significant performance improvements over nonorthogonal methods, with up to a 42% reduction in localization error and a 1.5 dB enhancement in signal-to-clutter ratio (SCR). Furthermore, the system achieves millimeter-level resolution, successfully detecting targets with a 1.2 mm diameter and resolving double and triple targets separated by as little as 5 mm. These findings demonstrate the potential of combining high-gain antennas, spatial spread beamforming, and frequency orthogonality to advance the development of compact, efficient, and high-resolution THz imaging systems.

Nationell ämneskategori
Elektroteknik och elektronik
Forskningsämne
Telekommunikation
Identifikatorer
urn:nbn:se:kth:diva-371155 (URN)
Forskningsfinansiär
Stiftelsen för strategisk forskning (SSF)
Anmärkning

QC 20251007

Tillgänglig från: 2025-10-06 Skapad: 2025-10-06 Senast uppdaterad: 2025-10-07Bibliografiskt granskad

Open Access i DiVA

Thesis(14095 kB)87 nedladdningar
Filinformation
Filnamn FULLTEXT05.pdfFilstorlek 14095 kBChecksumma SHA-512
65b9db50eac4fdc9de414fb306b81b6e5eb5b9c51482c2c3768f1257f00b78ff2d68e6416041eea92d594d2eee02c725077c2ca1e61f4fd5cf13a043d609fbac
Typ fulltextMimetyp application/pdf

Person

Madannejad, Alireza Madannejad

Sök vidare i DiVA

Av författaren/redaktören
Madannejad, Alireza Madannejad
Av organisationen
Mikro- och nanosystemteknik
Elektroteknik och elektronik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 87 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 1323 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf