Numerical studies on elastoviscoplastic fluid flows
2025 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Hållbar utveckling
SDG 6: Rent vatten och sanitet, SDG 9: Hållbar industri, innovationer och infrastrukturAlternativ titel
Numeriska studier av elastoviskoplastiska fluidflöden (Svenska)
Abstract [en]
Yield stress fluids are ubiquitous in our environment and industrial processes - from food, cosmetics and hygiene products to paper pulp processing and geophysical flows of magma, mudslides and avalanches. The flow behaviour of these fluids is qualitatively different from water and other simple fluids, for instance because they behave as soft solid materials before starting to flow. Therefore it is important for applications to be able to understand and model yield stress fluid flow.
Bingham formulated his seminal model for yield stress fluids already in the beginning of 20\textsuperscript{th} century, but in the recent years experiments have shown that many flow phenomena cannot be explained by the Bingham model. A new central insight is that the elasticity of the material plays a role, and results in behaviours similar to viscoelastic fluids. To capture such effects in computer simulations, one has to use an elastoviscoplastic model that combines yield stress and elasticity of the fluid.
This thesis consists of computer simulations of flows of elastoviscoplastic fluids in fundamental canonical flow configurations of relevance for industries. Also multiphase flows are studied – suspensions of particles, droplets and bubbles – with specialised numerical methods. In suspensions of bubbles or droplets in planar shear flow, we show how rheology and droplet dynamics is affected by yield stress and elasticity of the surrounding material. Fluid elasticity makes the droplets migrate towards channel walls, while yield stress increases the effective viscosity of the fluid, slowing down this migration. When two bubbles come close to each other in shear flow, they either attract or repel each other in the vorticity direction depending on their relative separation.
Particle suspensions are analysed in a three-dimensional channel with a quadratic cross-section. We observe, similarly to experiments, that spherical particles move towards the four corners of the channel, and we explain this phenomenon by analysing the stress fields obtained from our simulations. Non-spherical particles on the other hand can obtain several distinct stable orientations, and precessing or tumbling motions, when interacting with the solid part of the material, the ``central plug region".
Building on the studies of multiphase flows comprising elastoviscoplastic carrier fluids under laminar flow conditions, attention was turned to the behaviour of viscous droplets suspended in such fluids under turbulent flow conditions. The elasticity and yield stress of the carrier fluid are found to play a central role in droplet break-up and coalescence. As elasticity and yield stress increase, droplet break-up is suppressed, leading to the formation of large droplets and an accompanying skewness in the size distribution of droplets. The elasticity of the carrier fluid generates lift forces across the channel that drive droplet migration towards the centre. This migration depletes droplet layers near the walls, hence no significant variations in drag are observed.
Next, the first study of heat transfer by natural convection in elastoviscoplastic fluids is performed. The findings show that material elasticity can account for experimentally observed behaviour in Carbopol, such as the immediate onset of motion when a temperature gradient is applied in fluids with sufficiently low yield stress. In fluids with higher (super-critical) yield stress, the solid-like material is found to undergo elasto-inertial vibrations, resembling the behaviour of a damped spring-mass system.
Finally, three-dimensional computer simulations are conducted to successfully reproduce for the first time a classical wake instability in the flow viscoelastic fluids past a confined, circular cylinder in both steady and time-dependent regimes. The influence of different fluid behaviours is examined - in particular, the impact of shear-thinning in viscoelastic liquids and the role of yield stress in elastoviscoplastic materials. The results show that a small degree of shear-thinning in the first normal stress coefficient of viscoelastic liquids can rapidly suppress the instability. In elastoviscoplastic fluids, the characteristic instability is found to persist, with velocity fluctuations remarkably extending into the surrounding un-yielded regions of the material - which behave like soft solids - through elastic deformation.
Abstract [sv]
Flytspänningsvätskor är vanligt förekommande i vår omgivning och i industriella processer – från livsmedel, kosmetika och hygienprodukter till processering av pappersmassa och geofysiska flöden av till exempel magma, jordskred och laviner. Flödesbeteendet av dessa vätskor skiljer sig markant från flödet av vatten och andra enkla vätskor, bland annat för att de beter sig som mjuka fasta material innan de börjar flöda, vilket ger lavinartade beteenden. Därför är det viktigt för tillämpningarna att kunna förstå och modellera deras flöden.
Bingham formulerade sin banbrytande modell för flytspänningsvätskor redan i början av 1900-talet, men de senaste åren har experiment visat att många strömningsfenomen för dessa vätskor inte kan förklaras av Bingham-modellen. En ny central insikt är att materialens elasticitet spelar roll, och resulterar i flödesfenomen som liknar viskoelastiska vätskor. För att kunna fånga dessa effekter måste man använda en elastoviskoplastisk modell som kombinerar flytspänning och elasticitet.
Denna avhandling består av datorberäkningar av elastoviskoplastiska vätskeflöden i grundläggande flödeskonfigurationer av relevans för industrierna. Också flerfasflöden studeras – suspensioner av partiklar, droppar och bubblor – med specialiserade numeriska metoder. I suspensioner av bubblor och droppar i plan skjuvströmning visar vi hur reologin och dropparnas dynamik påverkas av flytspänning och elasticitet av materialet. Vätskans elasticitet leder till att dropparna flyttar sig mot kanalväggarna, medan flytspänning ökar den effektiva viskociteten och saktar ner deras förflyttning. När två bubblor kommer nära varandra i skjuvströmning så rör de sig mot eller ifrån varandra i vorticitetsriktningen.
Partikelsuspensioner analyseras i tredimensionella kanaler av kvadratiskt tvärsnitt. Vi observerar likt experiment att runda (sfäriska) partiklar flyttar sig mot kanalens fyra hörn och förklarar detta fenomen genom att studera spänningsfält från simuleringarna. Icke-sfäriska partiklar däremot kan anta flera stabila orienteringar och jämviktstillstånd, och partiklarna utför flera olika precesserande och tumlande rörelser, när de interagerar med den fasta delen av materialet, den ``centrala pluggregionen".
Med utgångspunkt i studierna av droppar, bubblor och partiklar i elastoviskoplastiska vätskor under laminära strömningsförhållanden riktas uppmärksamheten mot beteendet hos viskösa droppar suspenderade i sådana vätskor under turbulenta strömningsförhållanden. Elasticiteten och flytspänning hos bärarvätskan visar sig spela en central roll för droppars sönderfall och koalescens. När elasticitet och flytgräns ökar motverkas droppars sönderfall, vilket leder till bildandet av stora droppar och en åtföljande skevhet i storleksfördelningen. De stora dropparnas deformerbarhet, tillsammans med bärarvätskans elasticitet, genererar lyftkrafter tvärs över kanalen som driver droppmigration mot centrum. Denna migration tunnar ut droppskikten nära väggarna, och därför observeras inga betydande variationer i friktion.
Nästa del av arbetet utgörs av den första studien av värmeöverföring genom naturlig konvektion i elastoviskoplastiska vätskor. Resultaten visar att materialets elasticitet kan förklara experimentellt observerat beteende i Carbopol, såsom det omedelbara påbörjandet av rörelse när en temperaturgradient appliceras i vätskor med tillräckligt låg flytgräns. I vätskor med högre (superkritisk) flytgräns uppvisar det fastliknande materialet elasto-inertiella vibrationer, vilka påminner om beteendet hos ett dämpat fjäder-mass-system.
Avslutningsvis utförs tredimensionella datorsimuleringar där man för första gången framgångsrikt reproducerar en klassisk vakinstabilitet i strömningen av viskoelastiska vätskor kring en innesluten, cirkulär cylinder under både stationära och tidsberoende förhållanden. Olika vätskeegenskapers inverkan undersöks – särskilt effekten av skjuvtunnande i viskoelastiska vätskor och flytgränsens roll i elastoviskoplastiska material. Resultaten visar att en liten grad av skjuvtunnande i den första normala spänningskoefficienten hos viskoelastiska vätskor snabbt kan dämpa instabiliteten. I elastoviskoplastiska vätskor kvarstår den karakteristiska instabiliteten, och hastighetsfluktuationer sträcker sig påtagligt in i de omgivande, ej uppflytna områdena av materialet – som beter sig som mjuka fasta kroppar – genom elastisk deformation.
Ort, förlag, år, upplaga, sidor
Stockholm, Sweden: KTH Royal Institute of Technology, 2025.
Serie
TRITA-SCI-FOU ; 2025:48
Nyckelord [en]
Yield stress fluids, Elastoviscoplastic Fluids, Multiphase Flows, Droplets, Emulsions, Bubbles, Particles, Natural Convection, Turbulence, Flow instability
Nyckelord [sv]
Flytspänningsvätskor, Elastoviskoplastiska vätskor, Flerfasflöden, Droppar, Emulsioner, Bubblor, Partiklar, Fri konvektion, Turbulens, Flödesinstabiliteter
Nationell ämneskategori
Strömningsmekanik
Forskningsämne
Teknisk mekanik
Identifikatorer
URN: urn:nbn:se:kth:diva-371197ISBN: 978-91-8106-402-5 (tryckt)OAI: oai:DiVA.org:kth-371197DiVA, id: diva2:2004558
Disputation
2025-10-27, Kollegiesalen, Brinellvägen 8, Stockholm, 10:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
EU, Europeiska forskningsrådet, 2019-StG-852529
Anmärkning
QC251009
2025-10-092025-10-072025-10-14Bibliografiskt granskad
Delarbeten