Active control of resistive wall modes and error field compensation in reversed field pinch devices
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
The advanced tokamak scenario relevant for steady state operation require a conductive shell to stabilize the ideal Magneto Hydro Dynamic (MHD) modes with fast growth rate on the Alfvén time scale. However, for pulse lengths τp longer than the shell time τw , the finite conductivity of the shell introduces the Resistive Wall Mode (RWM) instability. In the absence of plasma rotation, RWMs can be controlled using magnetic feedback and model-based control algorithms have potential advantages for RWM feedback control. In this work, a white-box physics model has been used to characterize the RWM plasma response. The RWM plasma response has been experimentally validated by the excitation of nonaxisymmetric perturbation magnetic fields utilizing an array of control coils on the Reversed Field Pinch (RFP) device EXTRAP T2R. EXTRAP T2R is equipped with an extended sensor array, enabling a wide spectrum of RWMs to be resolved and experimentally validated. A model-based optimal control method for multi-mode RWM feedback stabilization has been designed, implemented and tested in plasma experiments at EXTRAP T2R. EXTRAP T2R utilizes a feedback controller that is designed to address challenges that arise in connection with RWM magnetic feedback stabilization systems that rely on discrete control coil and sensor arrays in tokamak and RFP devices. In these devices, the systems for multi-mode control capabilities is limited due to coupling of modes induced by the control system. The coupling arises from the generation of side-band control field harmonics and from the aliasing of multiple harmonics in the sensor measurements, resulting in a Multi Input, Multiple Output (MIMO) control problem. To adress this, the MIMO control problem can be Fourier-decoupled into a set of Single Input, Multiple Output (SIMO) systems using the Discrete Fourier Transform (DFT). This decoupling enables the design of a controller with enhanced multi-mode control capabilities compared to previous controller designs. The controller design allows for prioritizing suppression of one of the multiple magnetic field Fourier harmonics produced by a given control current DFT component. Plasma experiments at the EX-TRAP T2R device, utilizing the extended sensor array and the enhanced capabilities for multiple RWM feedback stabilization have demonstrated the effectiveness of the controller in achieving multiple RWM feedback stabilization. The RWM feedback stabilization has been implemented using a linear physics model-based Linear Quadratic (LQ) optimal control algorithm that has been extended to include Error Field (EF) correction. The EF correction is based on a scheme known in control engineering as disturbance estimation and rejection. The new RWM control algorithm is implemented and tested in EXTRAP T2R plasma experiments that performs real-time EF estimation and feedforward EF compensation in parallel with feedback stabilization. The EF correction leads to improved performance of the RFP plasma, indicated by lower plasma resistance and sustained, less perturbed intrinsic tearing mode rotation, visible as a reduction of the temporal fluctuations in the mode rotation frequency. The estimated spatial and temporal structure of the EF provides useful information for identification of the EF sources in the EX-TRAP T2R device.
Abstract [sv]
Det avancerade tokamak scenariot, relevant för stationär drift använder en omgivande elektriskt ledande vägg för att stabilisera ideala MHD moder med hög tillväxttakt. Men, för plasmapulser som varar längre än väggens karakteristiska tid för genomträngning av magnetfältet, så ger den ändliga konduktiviteten i väggen upphov till resistiv-vägg instabilitet (”Resistive Wall Mode”). I frånvaro av plasmarotation så kan RWM stabiliseras med magnetisk återkoppling, och för denna metod har modell-baserade styralgoritmer potentiella fördelar. I detta arbete har en ”white-box” fysikalisk modell använts för att karaktärisera plasma-svaret för RWM. Plasma-svaret för RWM har validerats experimentellt vid reverserad-fält pinch (”Reversed-field pinch”) (”RFP”) experimentet EXTRAP T2R genom excitation av asymmetriska magnetiska störfält, som skapas av en matris av styrspolar. EXTRAP T2R är utrustad med en omfattande sensor-matris, som möjliggör upplösning och experimentell validering av ett brett spektrum av RWM. En modell-baserad optimal styrmetod för återkopplad stabilisering av multipla RWM har designats, implementerats och testats vid plasmaexperiment i EXTRAP T2R. En styralgoritm har designats för att möta de utmaningar som uppkommer i samband med styrsystem som består av matriser av diskreta styrspolar och sensorer i tokamak och RFP. Dessa system har begränsade möjligheter för multi-mod stabilisering på grund av koppling mellan moder via styrsystemet. Kopplingen uppkommer genom generation av övertoner i styrfältet, och från ”aliasing” av dessa i sensorsignalen. Detta resulterar i ett ”Multi-Input, Multi-Output” (”MIMO”) styrproblem. Detta MIMO styrproblem har med användning av Diskret Fourier Transform (DFT) delats upp ett antal mindre ”Single-Input, Multi-Output” (”SIMO”) styrproblem. En styralgoritm har designats som har förbättrade möjligheter, och som bland annat tillåter prioritering av en av flera övertoner för en given DFT komponent av styrströmmen. Plasmaexperiment vid EXTRAP T2R har demonstrerat dessa förbättrade möjligheter. Metoden som använder en modell-baserad linjärkvadratisk (”Linear-Quadratic”) (”LQ”) optimal styralgoritm har utvidgats till att inkludera fältfel (”Error field”) (”EF”) korrektion. Metoden bygger på störningsestimering och kompensering (”Disturbance estimation and rejection”). Styralgoritmen som har implementerats och testats vid EXTRAP T2R utför störningsestimering i realtid och EF korrektion parallellt med RWM stabilisering. EF korrektionen medför förbättrade egenskaper hos RFP plasmat, som lägre plasmaresistans och mindre fluktuationer i rotationsfrekvensen för resonanta ”tearing” moder. Rums- och tidsvariationen av estimerat EF ger information om källorna till EF i EXTRAP T2R anläggningen.
Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. , p. xi, 89
Series
TRITA-EECS-AVL ; 2025:21
Keywords [en]
Resistive wall mode, Reversed field pinch, Experimental characteri- zation, Modelling, Feedback control, Multiple modes, Optimal control, Error field correction
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-372090ISBN: 978-91-8106-195-6 (print)OAI: oai:DiVA.org:kth-372090DiVA, id: diva2:2008879
Public defence
2025-11-25, https://kth-se.zoom.us/j/63681858855, F3, Lindstedtsvägen 26 & 28, Stockholm, 09:00 (English)
Opponent
Supervisors
Note
QC 20251031
2025-10-312025-10-242025-11-03Bibliographically approved
List of papers