kth.sePublications
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Active control of resistive wall modes and error field compensation in reversed field pinch devices
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering and Fusion Science.ORCID iD: 0000-0001-8673-9612
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The advanced tokamak scenario relevant for steady state operation require a conductive shell to stabilize the ideal Magneto Hydro Dynamic (MHD) modes with fast growth rate on the Alfvén time scale. However, for pulse lengths τp longer than the shell time τw , the finite conductivity of the shell introduces the Resistive Wall Mode (RWM) instability. In the absence of plasma rotation, RWMs can be controlled using magnetic feedback and model-based control algorithms have potential advantages for RWM feedback control. In this work, a white-box physics model has been used to characterize the RWM plasma response. The RWM plasma response has been experimentally validated by the excitation of nonaxisymmetric perturbation magnetic fields utilizing an array of control coils on the Reversed Field Pinch (RFP) device EXTRAP T2R. EXTRAP T2R is equipped with an extended sensor array, enabling a wide spectrum of RWMs to be resolved and experimentally validated. A model-based optimal control method for multi-mode RWM feedback stabilization has been designed, implemented and tested in plasma experiments at EXTRAP T2R. EXTRAP T2R utilizes a feedback controller that is designed to address challenges that arise in connection with RWM magnetic feedback stabilization systems that rely on discrete control coil and sensor arrays in tokamak and RFP devices. In these devices, the systems for multi-mode control capabilities is limited due to coupling of modes induced by the control system. The coupling arises from the generation of side-band control field harmonics and from the aliasing of multiple harmonics in the sensor measurements, resulting in a Multi Input, Multiple Output (MIMO) control problem. To adress this, the MIMO control problem can be Fourier-decoupled into a set of Single Input, Multiple Output (SIMO) systems using the Discrete Fourier Transform (DFT). This decoupling enables the design of a controller with enhanced multi-mode control capabilities compared to previous controller designs. The controller design allows for prioritizing suppression of one of the multiple magnetic field Fourier harmonics produced by a given control current DFT component. Plasma experiments at the EX-TRAP T2R device, utilizing the extended sensor array and the enhanced capabilities for multiple RWM feedback stabilization have demonstrated the effectiveness of the controller in achieving multiple RWM feedback stabilization. The RWM feedback stabilization has been implemented using a linear physics model-based Linear Quadratic (LQ) optimal control algorithm that has been extended to include Error Field (EF) correction. The EF correction is based on a scheme known in control engineering as disturbance estimation and rejection. The new RWM control algorithm is implemented and tested in EXTRAP T2R plasma experiments that performs real-time EF estimation and feedforward EF compensation in parallel with feedback stabilization. The EF correction leads to improved performance of the RFP plasma, indicated by lower plasma resistance and sustained, less perturbed intrinsic tearing mode rotation, visible as a reduction of the temporal fluctuations in the mode rotation frequency. The estimated spatial and temporal structure of the EF provides useful information for identification of the EF sources in the EX-TRAP T2R device.

Abstract [sv]

Det avancerade tokamak scenariot, relevant för stationär drift använder en omgivande elektriskt ledande vägg för att stabilisera ideala MHD moder med hög tillväxttakt. Men, för plasmapulser som varar längre än väggens karakteristiska tid för genomträngning av magnetfältet, så ger den ändliga konduktiviteten i väggen upphov till resistiv-vägg instabilitet (”Resistive Wall Mode”). I frånvaro av plasmarotation så kan RWM stabiliseras med magnetisk återkoppling, och för denna metod har modell-baserade styralgoritmer potentiella fördelar. I detta arbete har en ”white-box” fysikalisk modell använts för att karaktärisera plasma-svaret för RWM. Plasma-svaret för RWM har validerats experimentellt vid reverserad-fält pinch (”Reversed-field pinch”) (”RFP”) experimentet EXTRAP T2R genom excitation av asymmetriska magnetiska störfält, som skapas av en matris av styrspolar. EXTRAP T2R är utrustad med en omfattande sensor-matris, som möjliggör upplösning och experimentell validering av ett brett spektrum av RWM. En modell-baserad optimal styrmetod för återkopplad stabilisering av multipla RWM har designats, implementerats och testats vid plasmaexperiment i EXTRAP T2R. En styralgoritm har designats för att möta de utmaningar som uppkommer i samband med styrsystem som består av matriser av diskreta styrspolar och sensorer i tokamak och RFP. Dessa system har begränsade möjligheter för multi-mod stabilisering på grund av koppling mellan moder via styrsystemet. Kopplingen uppkommer genom generation av övertoner i styrfältet, och från ”aliasing” av dessa i sensorsignalen. Detta resulterar i ett ”Multi-Input, Multi-Output” (”MIMO”) styrproblem. Detta MIMO styrproblem har med användning av Diskret Fourier Transform (DFT) delats upp ett antal mindre ”Single-Input, Multi-Output” (”SIMO”) styrproblem. En styralgoritm har designats som har förbättrade möjligheter, och som bland annat tillåter prioritering av en av flera övertoner för en given DFT komponent av styrströmmen. Plasmaexperiment vid EXTRAP T2R har demonstrerat dessa förbättrade möjligheter. Metoden som använder en modell-baserad linjärkvadratisk (”Linear-Quadratic”) (”LQ”) optimal styralgoritm har utvidgats till att inkludera fältfel (”Error field”) (”EF”) korrektion. Metoden bygger på störningsestimering och kompensering (”Disturbance estimation and rejection”). Styralgoritmen som har implementerats och testats vid EXTRAP T2R utför störningsestimering i realtid och EF korrektion parallellt med RWM stabilisering. EF korrektionen medför förbättrade egenskaper hos RFP plasmat, som lägre plasmaresistans och mindre fluktuationer i rotationsfrekvensen för resonanta ”tearing” moder. Rums- och tidsvariationen av estimerat EF ger information om källorna till EF i EXTRAP T2R anläggningen.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. , p. xi, 89
Series
TRITA-EECS-AVL ; 2025:21
Keywords [en]
Resistive wall mode, Reversed field pinch, Experimental characteri- zation, Modelling, Feedback control, Multiple modes, Optimal control, Error field correction
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-372090ISBN: 978-91-8106-195-6 (print)OAI: oai:DiVA.org:kth-372090DiVA, id: diva2:2008879
Public defence
2025-11-25, https://kth-se.zoom.us/j/63681858855, F3, Lindstedtsvägen 26 & 28, Stockholm, 09:00 (English)
Opponent
Supervisors
Note

QC 20251031

Available from: 2025-10-31 Created: 2025-10-24 Last updated: 2025-11-03Bibliographically approved
List of papers
1. Experimental validation of resistive wall mode instability models for active magnetic feedback control
Open this publication in new window or tab >>Experimental validation of resistive wall mode instability models for active magnetic feedback control
2019 (English)In: 46th EPS Conference on Plasma Physics, EPS 2019, European Physical Society (EPS) , 2019Conference paper, Published paper (Refereed)
Place, publisher, year, edition, pages
European Physical Society (EPS), 2019
National Category
Physical Sciences
Identifiers
urn:nbn:se:kth:diva-274843 (URN)2-s2.0-85084022645 (Scopus ID)
Conference
46th European Physical Society Conference on Plasma Physics, EPS 2019, 8-12 July 2019, Milan, Italy
Note

QC 20200618

Available from: 2020-06-18 Created: 2020-06-18 Last updated: 2025-10-24Bibliographically approved
2. Experimental characterization and modelling of the resistive wall mode response in a reversed field pinch
Open this publication in new window or tab >>Experimental characterization and modelling of the resistive wall mode response in a reversed field pinch
2022 (English)In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 64, no 5, article id 055011Article in journal (Refereed) Published
Abstract [en]

Model-based control algorithms have potential advantages for resistive wall mode (RWM) feedback control. In this study, a physics model of the RWM response to externally applied perturbation fields is validated against experiments in a reversed field pinch (RFP). The experimental characterization of the RWM plasma response is performed in the EXTRAP T2R device by the excitation of nonaxisymmetric perturbation magnetic fields utilizing an external array of saddle coils for RWM control. The modelling and experimental validation is carried out with an extended sensor array, resolving a wider spectrum of RWM compared to earlier studies, covering the relevant poloidal m = 1 and toroidal -32 < n < 32 modes for this high aspect ratio RFP device. In addition to the nonresonant unstable modes, which are the primary target of RWM feedback control, this spectrum also includes a wide range of resonant modes. The validated resistive magnetohydrodynamics (MHD) model includes the passive stabilization effect on these modes from intrinsic plasma rotation. The inclusion of resistivity and plasma rotation in the present model provides a substantially better agreement between modelled and experimental growth rates than that observed in earlier studies using the ideal MHD model. The present model provides a realistic description of the plasma response for both nonresonant and resonant modes, which is both relatively simple and compatible with the computing capabilities and latency limitations encountered in practical implementations of model-based control algorithms.

Place, publisher, year, edition, pages
IOP Publishing, 2022
Keywords
resistive wall mode, reversed field pinch, experimental characterization, modelling, plasma response, feedback control
National Category
Fusion, Plasma and Space Physics
Identifiers
urn:nbn:se:kth:diva-311531 (URN)10.1088/1361-6587/ac5cf9 (DOI)000780055800001 ()2-s2.0-85128840364 (Scopus ID)
Note

QC 20220429

Available from: 2022-04-29 Created: 2022-04-29 Last updated: 2025-10-24Bibliographically approved
3. Model based optimal magnetic feedback control of multiple resistive wall modes with discrete coil and sensor arrays
Open this publication in new window or tab >>Model based optimal magnetic feedback control of multiple resistive wall modes with discrete coil and sensor arrays
2024 (English)In: Fusion engineering and design, ISSN 0920-3796, E-ISSN 1873-7196, Vol. 198, article id 114099Article in journal (Refereed) Published
Abstract [en]

A model-based optimal control method for multiple resistive wall mode (RWM) feedback stabilization has been developed and tested in plasma experiments at the EXTRAP T2R reversed field pinch (RFP) device. The controller is designed to target issues that arise in connection with RWM magnetic feedback stabilization systems based on discrete control coil and sensor arrays in tokamak and reversed field pinch devices. Multi-mode control capabilities in these systems is limited due to coupling of modes induced by the control system. The coupling originates from the generation of side-band control field harmonics and from aliasing of multiple harmonics in the sensor measurements. These couplings naturally leads to a multiple-input, multiple-output (MIMO) control problem. A model based state space controller has been designed based on a relatively simple physics model of the RWM plasma response. The physics model, which is applicable for the high aspect ratio RFP, is the basis for Fourier decoupling of the MIMO control problem into a set of single-input, multiple-output (SIMO) systems using the discrete Fourier transform (DFT). The linear, time-invariant physics model allows for the design of a state space model with states representing physical quantities; in this case the Fourier harmonics of the radial field at the resistive wall. Since the states cannot be directly measured, a Kalman filter is used for estimation of the states from the aliased sensor array measurements. A linear–quadratic (LQ) optimal state controller has been implemented. Design parameters, such as the LQ control cost function state weights and the Kalman filter input error covariances have been used to optimize the control operation in various ways. The controller has enhanced multi-mode control capabilities compared to earlier designs. For example it allows the prioritizing of suppression of one of the multiple magnetic field Fourier harmonics produced by a given control current DFT component. The controller has been tested in plasma experiments at EXTRAP T2R device, utilizing a newly installed extended sensor array, and the enhanced capabilities for multiple RWM feedback stabilization has been demonstrated.

Place, publisher, year, edition, pages
Elsevier BV, 2024
Keywords
Multiple modes, Optimal control, Resistive wall mode
National Category
Control Engineering
Identifiers
urn:nbn:se:kth:diva-341605 (URN)10.1016/j.fusengdes.2023.114099 (DOI)001139933200001 ()2-s2.0-85179124176 (Scopus ID)
Note

QC 20231227

Available from: 2023-12-27 Created: 2023-12-27 Last updated: 2025-10-24Bibliographically approved
4. Error field correction in reversed field pinch with feedback stabilization of resistive wall mode
Open this publication in new window or tab >>Error field correction in reversed field pinch with feedback stabilization of resistive wall mode
2025 (English)In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 67, no 2, article id 025017Article in journal (Refereed) Published
Abstract [en]

A recently developed, model-based linear-quadratic optimal resistive wall mode (RWM) control algorithm is extended in this work to include error field (EF) correction. The EF correction is based on a scheme known in control engineering as disturbance estimation and rejection. The new control algorithm performs real-time EF estimation and feedforward EF compensation in parallel with feedback stabilization. The new RWM control algorithm is implemented and tested in reversed field pinch (RFP) plasma experiments on the EXTRAP T2R device. The EF correction leads to improved performance of the RFP plasma, indicated by lower plasma resistance and sustained, less perturbed intrinsic tearing mode rotation, visible as a reduction of the temporal fluctuations in the mode rotation frequency. The estimated spatial and temporal structure of the EF provides useful information for identification of the EF sources in the EXTRAP T2R device.

Place, publisher, year, edition, pages
IOP Publishing, 2025
Keywords
error field, error field correction, feedback control, resistive wall mode, reversed field pinch
National Category
Fusion, Plasma and Space Physics
Identifiers
urn:nbn:se:kth:diva-359282 (URN)10.1088/1361-6587/ada8dd (DOI)001401282900001 ()2-s2.0-85215756436 (Scopus ID)
Note

QC 20250131

Available from: 2025-01-29 Created: 2025-01-29 Last updated: 2025-10-24Bibliographically approved

Open Access in DiVA

fulltext(6309 kB)33 downloads
File information
File name FULLTEXT01.pdfFile size 6309 kBChecksum SHA-512
ee1ecae70127ce59c681188f43f9c79b273c914fe8a19b9d3d377df0f1430e7dc3531e59f36310a45fe56a1576f32c51392232ef20af3bebf067d9f83f519c38
Type fulltextMimetype application/pdf

Authority records

Saad, Erik Amir

Search in DiVA

By author/editor
Saad, Erik Amir
By organisation
Electromagnetic Engineering and Fusion Science
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 762 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf