kth.sePublications
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Reduction of industrial hematite pellets using hydrogen and some of its impacts on steelmaking
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Process.ORCID iD: 0000-0002-8424-8673
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Sustainable development
SDG 12: Responsible consumption and production, SDG 13: Climate action
Abstract [en]

The transition to fossil-free steelmaking is one way to significantly reduce the anthropogenic carbon dioxide emissions and meet the climate targets. The thesis investigates the hydrogen-based reduction of hematite pellets and some impacts on the steelmaking. Gaining a better understanding of the reduction process and how it links together with the melting operation, opens the possibility for process optimizations of the new H-DRI- EAF route. 

Since previous works have showed that the reduction reaction is greatly affected by the type of hematite sample used, this work uses commercial industrial hematite pellets to get relevant results that directly relate to pilot-scale processes in use today. The reduction behavior was studied under isothermal and non-isothermal conditions. During the isothermal reduction studies, the focus was directed to the effect of nitrogen dilution, since in some cases nitrogen gas is used in the inert gas seals that insert and extract the material from the reactor. The result showed that the nitrogen content, in the investigated range (0-30 vol%N2), reduced the reduction rate at all temperatures but the rate decreased more than expected at the temperatures of 600°C and 900°C. The rate decrease was mainly caused by the decreased driving force for gas diffusion and chemical reaction.The reduction temperature showed to have a large impact on the microstructure, however the N2 dilution showed no noticeable effect on the same.

To gain a deeper understanding of the reduction taking place inside a shaft furnace reactor, the reduction behaviors under non-isothermal conditions were studied. An extra focus was directed toward the effect of heating rate and water vapor contents in the reduction gas. Studying the reduction behavior under non-isothermal conditions is crucial when trying to optimize the reduction process taking place inside a shaft furnace reactor. The heating rate and water vapor content in the reduction gas had a significant impact on the rate of reduction, i.e., the rate increased with increasing heating rate and decreasing H2O content. The reduction was initiated at around 450°C when pure hydrogen gas was used for reduction. However, when the reduction gas contained 5-20vol%H2O, the reduction started at a temperature close to 525°C. The microstructure at the surface of the pellet showed had similar appearances, irrespective of the heating rateapplied. Furthermore, the main feature of the microstructure showed no signs of sintering when further heated after complete reduction. However, the main feature of the center microstructure varied depending on the heating rate. The appearance of the iron phase changed from porous to dense structure when the temperature exceeded 668°C. The formation of dense iron significantly decreased the rate of mass transfer of H2 and H2O to and away from the reaction site through the product layer- affecting the total reduction rate. When the reduction gas contained more than 5 vol%H2O, the reduction becamemore complex as a mechanism change occurred between 0.11-0.15 degrees of reduction. The mechanism change led to a low-rate stage, and it was related to the presence of FeO phase. Consequently, it is crucial to consider this mechanism change when modeling and optimizing the shaft furnace process. To summarize, the total reduction rate increased with faster heating rate due to increased rate of the chemical reaction, the mass transfer through the product layer, as well as it widened the reaction zone.

The melting behavior of H-DRI was investigated to gain insight into the preliminary impurity contents when melting H-DRI. This was done to better understand the need for optimization of the refining process when the new H-DRI-EAF process is in use. The work contained pilot-scale and laboratory samples to systematically study the pickup and release of hydrogen and nitrogen, and the formation of inclusions during melting of H-DRI. The result showed that significant amounts of the ingoing hydrogen and nitrogen in the H-DRI were adsorbed on the surface. During melting, the surface area significantly decreased, and the hydrogen and nitrogen contents almost decreased instantaneously. However, the final contents were around 4-36 ppm H and 20-30 ppm N, mainly due to the elements increased solubility in the crude steel and higher mobility at the higher temperature. The inclusions found inside the crude steel after melting 100% H-DRI were analyzed. First the main mechanism of formation of the inclusions were studied using laboratory work. The H-DRI was subjected to heat, and the residual oxides present inside the H-DRI after reduction was forced together when the porous structure sintered. The inclusions were of different sizes and composition depending on what type of oxides that merged. The merging of the oxidic particles seemed to be one of the main mechanisms of formation of the inclusions. The inclusions varied significantly in size and composition, but the majority was in the size range >5.6 to 22.4 µm. However, a considerable number of inclusions having a size above 22.4 µm were also found. In total three different types of inclusions formed, and they are denoted as Type I-1, Type I-2 and Type I-3. Type I-1 inclusions formed when the autogenous slag (O-2) merged with Mg-rich oxides (O-1) with high MgO contents. Type I-2 inclusions formed when large amounts of autogenous slag merged with only very small number of Mg-rich oxides. Type I-3 inclusions contained single Mg-rich oxides that had not merged with any other oxides.

Abstract [sv]

Övergången till fossilfri ståltillverkning är ett sätt att kraftigt minska koldioxidutsläppen som vi människor orsakar, och på så sätt uppnå klimatmålen. Avhandlingen undersöker vätgasbaserad reduktion och hematitpellets och vissa av dess effekter på ståltillverkningen. En förbättrad förståelse för hur reduktionsprocessen ochsmältprocessen hänger ihop, öppnar möjligheter for processoptimering av den nya H-DRI-EAF processen.

Eftersom tidigare studier har visat att reduktionsreaktionen påverkas starkt av vilken typav hematitprov som används, har detta arbete använt kommersiella industriella hematitpellets för att få relevanta resultat som direkt relaterar till dagens pilotanläggningar. Reduktionsbeteendet studerades under både isotermiska och icke-isotermiska förhållanden. Under de isotermiska reduktionsstudierna låg fokus på effekten av utspädning av kväve, eftersom kvävgas ibland används i de inerta materialslussarna som matar in och tar ut material från reaktorn. Resultaten visade att kvävehalten, i det undersökta intervallet (0-30 vol%), minskade reduktionshastigheten vid alla temperaturer, men att hastigheten minskade mer än förväntat vid temperaturerna 600°C och 900°C. Hastighetminskingen berodde främst på minskad drivande kraft av gasdiffusion och kemisk reaktion. Reduktionstemperaturen hade en stor inverkan på mikrostrukturen, men N2-utspädningen visade ingen märkbar påverkan på den.

För att få en djupare förståelse för reduktionen som sker i en schaktugn studerades reduktionsbeteendet under icke-isotermiska förhållanden. Särskilt fokus riktades mot effekten av uppvärmningshastigheten och vattenångans halt i reduktionsgasen. Det avgörande att studera reduktionen under icke-isotermiska förhållanden för att optimera processen i schaktugnen. Uppvärmningshastigheten och vattenhalten i reduktionsgasen hade betydande inverkan på reduktionshastigheten, dvs. hastigheten ökade med en ökande uppvärmningshastighet och lägre H2O-halt. Reduktionen startade vid ca 450°C med ren vätgas, men när reduktionsgasen innehöll 5-20 vol%H2O började reduktionen dock först vid ca 525°C. Mikrostrukturen på pelletens ytan hade liknande utseende, oavsett vilken uppvärmningshastigheten som användes. Dessutom visade mikrostrukturens huvudsakliga egenskaper inga tecken på sintring vid ytterligare uppvärmning efter fullständig reduktion. Däremot varierade mikrostrukturen i centrum beroende på uppvärmningshastigheten. Järnfasens utseende ändrade utseende från porös till kompakt struktur när temperaturen översteg 668°C. Bildandet av den kompakta järnstrukturen minskade kraftigt massöverföringen av H2 och H2O till och från reaktionsytan genom produktlagret, vilket påverkade den totala reduktionshastigheten. När reduktionsgasen innehöll mer än 5 vol%H2O blev reduktionen mer komplex, eftersom en mekanismförändring inträffade mellan reduktionsgraderna 0.11-0.15. Denna förändring ledde till ett låg-hastighetsstadium och var kopplad till närvaron av FeO-fasen. Följaktligen är det viktigt att ta hänsyn till denna mekaniskförändring vid modellering och optimering av schaktugnsprocessen. Sammanfattningsvis, den totala reduktionshastigheten ökade med snabbare uppvärmnings hastighet på grund av en ökad kemisk reaktionshastighet, förbättrad massöverföring genom produktlagret, samt en bredare reaktionszon.

Smältbeteenden hos H-DRI undersöktes för att få insikt i de preliminära föroreningshalterna i råstålet vid smältning av H-DRI. Detta gjordes för att bättre förstå behovet av optimering av raffineringsprocessen när den nya H-DRI-EAF processen tas i bruk. Arbetet innehöll både pilot- och laboratorieprover för att systematiskt studera upptag och rening av väte och kväve samt bildandet av inneslutningar vid smältning av H-DRI. Resultaten visade att en stor mängd av det ingående vätet och kvävet i H-DRI var adsorberat på ytan. Under smältningen minskade ytarean avsevärt, och väte- och kvävehalterna minskade nästan omedelbart. De slutliga halterna låg dock runt 4-36 ppm H och 20-30 ppm N, främst på grund av ämnenas ökade löslighet och mobilitet i råstålet vid de ökade temperaturerna. Inneslutningarna som hittades i råstålet efter smältning av 100% H-DRI analyserades. Först studerades den huvudsakliga mekanismen för bildandet av inneslutningarna med hjälp av laboratoriestudier. När H-DRI utsattes för uppvärmning tvingades de kvarvarande oxiderna i den porösa strukturen samman när den porösa strukturen sintrades. Inneslutningarna hade olika storlekar och sammansättning beroende på vilken typ av oxider som smälte samman. Sammansmältningen av de oxidiska partiklarna verkade vara en av de viktigaste mekanismerna för bildandet av inneslutningarna. Inneslutningarna varierade kraftigt i storlek och sammansättning, men majoriteten låg i storleksintervallet >5.6 till 22.4 µm. Dock hittades en betydande mängd inneslutningar som var större än 22.4 µm. Totalt bildades tre olika inneslutningar, och de betecknas som Typ I-1, Typ I-2 och Typ I-3. Inneslutningar av Typ I-1 bildades då den autogena slaggen (O-2) sammansmälte med Mg-rika oxider (O-1) med högt MgO-innehåll. Inneslutning av Typ I-2 bildades när stora mängder autogen slagg sammansmälte med endast ett fåtal Mg-rika oxider. Typ I-3 inneslutningar utgjordes av enstaka Mg-rika oxider som inte hade sammanförts med några andra oxider.  

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2025. , p. 70
Series
TRITA-ITM-AVL ; 2025:43
Keywords [en]
Direct reduced iron, hematite pellet, hydrogen reduction, isothermal reduction, non-isothermal reduction, reaction mechanisms, microstructure, impurities in liquid steel, inclusions formed by melting of DRI
Keywords [sv]
Direktreducerat järn, hematitpellet, vätgasreduktion, isotermisk reduktion, icke-isotermisk reduktion, reaktionsmekanismer, mikrostruktur, orenheter i smält stål, orenheter till följd av smältning av DRI
National Category
Metallurgy and Metallic Materials
Research subject
Materials Science and Engineering
Identifiers
URN: urn:nbn:se:kth:diva-371658ISBN: 978-91-8106-439-1 (print)OAI: oai:DiVA.org:kth-371658DiVA, id: diva2:2009672
Public defence
2025-11-21, Sal B1 / https://kth-se.zoom.us/j/68130437151, Brinellvägen 23, Stockholm, 13:00 (English)
Opponent
Supervisors
Available from: 2025-10-29 Created: 2025-10-28 Last updated: 2025-11-05Bibliographically approved
List of papers
1. The Influence of Nitrogen on Hydrogen Reduction of Iron Ore Pellets
Open this publication in new window or tab >>The Influence of Nitrogen on Hydrogen Reduction of Iron Ore Pellets
2024 (English)In: Steel Research International, ISSN 1611-3683, E-ISSN 1869-344X, Vol. 95, no 5, article id 2300655Article in journal (Refereed) Published
Abstract [en]

As the iron and steel industry now strives for a carbon neutral industry, hydrogenbased direct reduction shaft furnace technology has become an alternative to theheavily fossil-depending blast furnace route. Research questions related to thefuture full-scale production have, therefore, become more interesting. Dependingon the operational conditions, the H2 concentration and temperature will varyacross the length of the reactor. This work studies the effect of nitrogen in ahydrogen-reducing gas during the reduction of commercial iron ore pellets usingthermogravimetric analysis. The reducing gas consisted of either pure hydrogenor a mixture of 90–70 vol% hydrogen and 10–30 vol% nitrogen at 773, 873, 973,1073, and 1173 K. It is found that the reduction rate decreased with decreasingtemperature and increasing nitrogen content. The effect of nitrogen on thereduction rate is more profound than expected from the decreased hydrogenpartial pressure alone. To aid the discussion, partially reduced pellets are studiedusing optical and scanning electron microscopy. It is found that the microstructure is strongly dependent on the temperature but independent of thenitrogen content.

Place, publisher, year, edition, pages
Wiley, 2024
Keywords
hematite, hydrogen reduction, iron ore pellet, nitrogen
National Category
Metallurgy and Metallic Materials
Identifiers
urn:nbn:se:kth:diva-371649 (URN)10.1002/srin.202300655 (DOI)001164088300001 ()2-s2.0-85185104741 (Scopus ID)
Note

QC 20251016

Available from: 2025-10-16 Created: 2025-10-16 Last updated: 2025-10-28Bibliographically approved
2. Effect of Heating Rate on the Non-Isothermal Hydrogen Reduction of Hematite Pellets
Open this publication in new window or tab >>Effect of Heating Rate on the Non-Isothermal Hydrogen Reduction of Hematite Pellets
2025 (English)In: ISIJ International, ISSN 0915-1559, E-ISSN 1347-5460, Vol. 65, no 2, p. 193-201, article id ISIJINT-2024-288Article in journal (Refereed) Published
Abstract [en]

Depending on the operational conditions inside a direct reduction shaft furnace, e.g., ingoing gas temperature, feeding rate of material, and gas composition, the outgoing material will differ. This study investigates how the heating rate affects the reduction during pure hydrogen reduction of commercial iron ore pellets. As expected, the reduction rate increased with increasing heating rate. The heating rate also significantly affected the microstructure evolution inside the pellet. Inside the hydrogen direct reduced pellets, the iron had two appearances: (1) porous iron containing small and numerous intragranular pores, or (2) dense iron with larger but fewer intragranular pores. The pellet reduced with the slowest heating rate consisted of only porous iron, while the faster heating rates comprised porous and dense iron. The amount of dense iron gradually increased with increasing heating rate and was found to start forming at a temperature of around 668°C. The solid iron aggravated the mass transfer through the product layer and decreased the total reaction rate. This led to an expanded spread of the reaction zone as the heating rate increased. Through this work, it was also shown that insignificant reduction took place below a temperature of 450°C. Lastly, the microstructure that evolved during the non-isothermal reduction vastly differs from the microstructure formed during isothermal reduction. Consequently, an effective diffusivity and thermal conductivity that varies with time and temperature must be considered when optimizing the shaft furnace reactor.

Place, publisher, year, edition, pages
Iron and Steel Institute of Japan, 2025
Keywords
non-isothermal reduction, hydrogen reduction, iron ore pellet, reduction mechanisms, microstructure
National Category
Metallurgy and Metallic Materials
Identifiers
urn:nbn:se:kth:diva-371650 (URN)10.2355/isijinternational.isijint-2024-288 (DOI)001508433400003 ()2-s2.0-85218503024 (Scopus ID)
Note

QC 20251016

Available from: 2025-10-16 Created: 2025-10-16 Last updated: 2025-10-28Bibliographically approved
3. Effect of Water on the Non-Isothermal Hydrogen-Water Reduction of Industrial Hematite Pellets
Open this publication in new window or tab >>Effect of Water on the Non-Isothermal Hydrogen-Water Reduction of Industrial Hematite Pellets
2025 (English)In: ISIJ International, ISSN 0915-1559, E-ISSN 1347-5460, Vol. 65, no 9, p. 1247-1256, article id ISIJINT-2025-089Article in journal (Refereed) Published
Abstract [en]

Reducing the greenhouse gas emissions from steel production can be done through direct reduction inside a shaft furnace using hydrogen gas as a reductant, generating water as an off gas. The temperature varies along the height of the shaft furnace, and studying the non-isothermal reduction is therefore necessary. In this work, industrial hematite pellets were non-isothermally reduced in a vertical tube furnace. Different gas mixtures containing water and hydrogen were used for reduction. The reduction gas used contained water vapor contents of 5%, 10%, and 20%, respectively, and the remaining gas was hydrogen. The experimental setup was carefully designed for the reductions to be carried out under well-controlled experimental conditions. It was clear that the water present in the reduction gas significantly decreased the reduction rate, especially at the lower temperatures. Moreover, the onset temperature of reduction was increased to around 525°C when water was present, compared to 450°C when pure hydrogen was used. Water contents above 5% lead to a low-rate stage at reduction degrees between 0.11 to 0.15. The low-rate stage ended when the wüstite phase became stable, changing the mechanism of reduction, which altered the chemical reaction rate. The reduction rate was less affected by water when the heating rate increased, since an increasing heating rate led to the reduction occurring at a higher temperature. Finally, the present study showed that the kinetics of non-isothermal reduction, using different water vapor contents, are very different from isothermal reduction.

Place, publisher, year, edition, pages
Iron and Steel Institute of Japan, 2025
Keywords
non-isothermal reduction, industrial hematite pellet, H2O–H2 reduction, water vapor content, reduction mechanisms.
National Category
Metallurgy and Metallic Materials
Identifiers
urn:nbn:se:kth:diva-371653 (URN)10.2355/isijinternational.isijint-2025-089 (DOI)2-s2.0-105013514982 (Scopus ID)
Note

QC 20251016

Available from: 2025-10-16 Created: 2025-10-16 Last updated: 2025-10-28Bibliographically approved
4. A preliminary study on the hydrogen and nitrogen contents in the hydrogen direct reduced iron and crude steel produced from H-DRI
Open this publication in new window or tab >>A preliminary study on the hydrogen and nitrogen contents in the hydrogen direct reduced iron and crude steel produced from H-DRI
(English)Manuscript (preprint) (Other academic)
Abstract [en]

The contents of hydrogen and nitrogen in the liquid steel after melting hydrogen direct reduced iron (H-DRI) inside an EAF just before tapping were investigated in this work. In addition, the contents of hydrogen and nitrogen inside H-DRI were also studied to understand their effects on hydrogen and nitrogen pickup and removal in EAF practice. The contents of hydrogen and nitrogen in the H-DRI were much greater than the solubility limit of pure iron at relevant process temperatures. Hence, a significant amount of the total contents come from adsorption on the pellet pore surface. Furthermore, the contents depend on the surface area and the type of cooling gas. The highest initial hydrogen (65-87 ppm) and nitrogen (100-120 ppm) contents were found in the laboratory-reduced H-DRI. A sudden and drastic decrease of the contents were noted when subjecting the pellet to temperatures of 1400°C, 1500°C, and 1550°C. The significant decreaseof hydrogen and nitrogen content in the pellet was due to the a) increased desorption rate, b) decreased surface area for adsorption and increased diffusion rate of the gas phase, when the temperature was increased. However, applying a longer heating time did not further decrease the contents and the crude steel sample contained a final hydrogen and nitrogen content of 6-22 ppm and 20-30ppm, respectively. Since the solubility limit of hydrogen and nitrogen significantly increase when the steel melts, the adhered gases can dissolve into the liquid metal. Furthermore, due to the small atom size of the hydrogen and fast diffusion rate, a significant amount of the hydrogen that adhered to the pellet pore surface dissolved into the liquid metal. In the case of nitrogen, the initial content (100-120 ppm) dropped below 20 ppm during heating at a temperature of 1400°C. Due to the slower dissolution rate of nitrogen, most of the adhered nitrogen is desorbed from the surface during heating. This preliminary work sheds light on the need for optimizing the refining process when H-DRI is used as input material.

National Category
Metallurgy and Metallic Materials
Identifiers
urn:nbn:se:kth:diva-371654 (URN)
Note

QC 20251016

Available from: 2025-10-16 Created: 2025-10-16 Last updated: 2025-10-28Bibliographically approved
5. Inclusions in the liquid steel of an electric arc furnace after melting hydrogen direct reduced iron pellets
Open this publication in new window or tab >>Inclusions in the liquid steel of an electric arc furnace after melting hydrogen direct reduced iron pellets
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Inclusions in crude steels are linked to employed feedstock material and secondary steelmaking should be tailored correspondingly for optimized praxis. Thus, when implementing hydrogen direct reduced iron (H-DRI) as feedstock for electric arc furnace (EAF) operation, knowledge of the number, size, type of inclusions, and mechanism of formation are needed to support future process development. Crude steel samples were collected from a pilot-scale EAF, employing 100% H-DRI, to study the inclusions originating from the novel feedstock. A sampler containing aluminum was used, and the effect of deoxidation is discussed. Laboratory experiments were conducted to understand the mechanisms of formation and growth of inclusions. It was clear that the inclusions formed because oxide particles merged and grew when the pores coalesced, and the iron grains sintered during the melting of H-DRI. The composition varied between the different inclusions and a total of three inclusion types were found. The size of the inclusions varied mainly between 5 and 70 µm, but the largest inclusion had a diameter of approximately 300 µm. The smallest inclusions (5-10 µm) were solid and contained mainly magnesiowüstite with a high MgO content (Type I-3). Type I-2 was larger (3-60 µm), and contained liquid, spinel, and no or small amounts of magnesiowüstite phase. Type I-1 inclusion varied greatly in size (13-300 µm) and contained all three phases with relatively high MgO content. H-DRI was heated for different durations and quenched prior to melting to study the formation mechanism. The link between feedstock material and inclusions in crude steel is discussed.  

Keywords
Crude steel from H-DRI, non-metallic inclusions, inclusion chemistry, Råstål från H-DRI, ickemetalliska inneslutningar, inneslutningskemi
National Category
Metallurgy and Metallic Materials
Identifiers
urn:nbn:se:kth:diva-371656 (URN)
Note

QC 20251027

Available from: 2025-10-22 Created: 2025-10-22 Last updated: 2025-10-28Bibliographically approved

Open Access in DiVA

fulltext(6896 kB)23 downloads
File information
File name FULLTEXT02.pdfFile size 6896 kBChecksum SHA-512
48f65665d7058e136763c1b8f74ece993e9a105ac6a3873d77965999a197e9a52314bdfa1458b9560a0f1346988454362807d4c92a653accf3a320172adbd6eb
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Fogelström, Julia Brännberg
By organisation
Process
Metallurgy and Metallic Materials

Search outside of DiVA

GoogleGoogle Scholar
Total: 23 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 598 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf