Reduction of industrial hematite pellets using hydrogen and some of its impacts on steelmaking
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Sustainable development
SDG 12: Responsible consumption and production, SDG 13: Climate action
Abstract [en]
The transition to fossil-free steelmaking is one way to significantly reduce the anthropogenic carbon dioxide emissions and meet the climate targets. The thesis investigates the hydrogen-based reduction of hematite pellets and some impacts on the steelmaking. Gaining a better understanding of the reduction process and how it links together with the melting operation, opens the possibility for process optimizations of the new H-DRI- EAF route.
Since previous works have showed that the reduction reaction is greatly affected by the type of hematite sample used, this work uses commercial industrial hematite pellets to get relevant results that directly relate to pilot-scale processes in use today. The reduction behavior was studied under isothermal and non-isothermal conditions. During the isothermal reduction studies, the focus was directed to the effect of nitrogen dilution, since in some cases nitrogen gas is used in the inert gas seals that insert and extract the material from the reactor. The result showed that the nitrogen content, in the investigated range (0-30 vol%N2), reduced the reduction rate at all temperatures but the rate decreased more than expected at the temperatures of 600°C and 900°C. The rate decrease was mainly caused by the decreased driving force for gas diffusion and chemical reaction.The reduction temperature showed to have a large impact on the microstructure, however the N2 dilution showed no noticeable effect on the same.
To gain a deeper understanding of the reduction taking place inside a shaft furnace reactor, the reduction behaviors under non-isothermal conditions were studied. An extra focus was directed toward the effect of heating rate and water vapor contents in the reduction gas. Studying the reduction behavior under non-isothermal conditions is crucial when trying to optimize the reduction process taking place inside a shaft furnace reactor. The heating rate and water vapor content in the reduction gas had a significant impact on the rate of reduction, i.e., the rate increased with increasing heating rate and decreasing H2O content. The reduction was initiated at around 450°C when pure hydrogen gas was used for reduction. However, when the reduction gas contained 5-20vol%H2O, the reduction started at a temperature close to 525°C. The microstructure at the surface of the pellet showed had similar appearances, irrespective of the heating rateapplied. Furthermore, the main feature of the microstructure showed no signs of sintering when further heated after complete reduction. However, the main feature of the center microstructure varied depending on the heating rate. The appearance of the iron phase changed from porous to dense structure when the temperature exceeded 668°C. The formation of dense iron significantly decreased the rate of mass transfer of H2 and H2O to and away from the reaction site through the product layer- affecting the total reduction rate. When the reduction gas contained more than 5 vol%H2O, the reduction becamemore complex as a mechanism change occurred between 0.11-0.15 degrees of reduction. The mechanism change led to a low-rate stage, and it was related to the presence of FeO phase. Consequently, it is crucial to consider this mechanism change when modeling and optimizing the shaft furnace process. To summarize, the total reduction rate increased with faster heating rate due to increased rate of the chemical reaction, the mass transfer through the product layer, as well as it widened the reaction zone.
The melting behavior of H-DRI was investigated to gain insight into the preliminary impurity contents when melting H-DRI. This was done to better understand the need for optimization of the refining process when the new H-DRI-EAF process is in use. The work contained pilot-scale and laboratory samples to systematically study the pickup and release of hydrogen and nitrogen, and the formation of inclusions during melting of H-DRI. The result showed that significant amounts of the ingoing hydrogen and nitrogen in the H-DRI were adsorbed on the surface. During melting, the surface area significantly decreased, and the hydrogen and nitrogen contents almost decreased instantaneously. However, the final contents were around 4-36 ppm H and 20-30 ppm N, mainly due to the elements increased solubility in the crude steel and higher mobility at the higher temperature. The inclusions found inside the crude steel after melting 100% H-DRI were analyzed. First the main mechanism of formation of the inclusions were studied using laboratory work. The H-DRI was subjected to heat, and the residual oxides present inside the H-DRI after reduction was forced together when the porous structure sintered. The inclusions were of different sizes and composition depending on what type of oxides that merged. The merging of the oxidic particles seemed to be one of the main mechanisms of formation of the inclusions. The inclusions varied significantly in size and composition, but the majority was in the size range >5.6 to 22.4 µm. However, a considerable number of inclusions having a size above 22.4 µm were also found. In total three different types of inclusions formed, and they are denoted as Type I-1, Type I-2 and Type I-3. Type I-1 inclusions formed when the autogenous slag (O-2) merged with Mg-rich oxides (O-1) with high MgO contents. Type I-2 inclusions formed when large amounts of autogenous slag merged with only very small number of Mg-rich oxides. Type I-3 inclusions contained single Mg-rich oxides that had not merged with any other oxides.
Abstract [sv]
Övergången till fossilfri ståltillverkning är ett sätt att kraftigt minska koldioxidutsläppen som vi människor orsakar, och på så sätt uppnå klimatmålen. Avhandlingen undersöker vätgasbaserad reduktion och hematitpellets och vissa av dess effekter på ståltillverkningen. En förbättrad förståelse för hur reduktionsprocessen ochsmältprocessen hänger ihop, öppnar möjligheter for processoptimering av den nya H-DRI-EAF processen.
Eftersom tidigare studier har visat att reduktionsreaktionen påverkas starkt av vilken typav hematitprov som används, har detta arbete använt kommersiella industriella hematitpellets för att få relevanta resultat som direkt relaterar till dagens pilotanläggningar. Reduktionsbeteendet studerades under både isotermiska och icke-isotermiska förhållanden. Under de isotermiska reduktionsstudierna låg fokus på effekten av utspädning av kväve, eftersom kvävgas ibland används i de inerta materialslussarna som matar in och tar ut material från reaktorn. Resultaten visade att kvävehalten, i det undersökta intervallet (0-30 vol%), minskade reduktionshastigheten vid alla temperaturer, men att hastigheten minskade mer än förväntat vid temperaturerna 600°C och 900°C. Hastighetminskingen berodde främst på minskad drivande kraft av gasdiffusion och kemisk reaktion. Reduktionstemperaturen hade en stor inverkan på mikrostrukturen, men N2-utspädningen visade ingen märkbar påverkan på den.
För att få en djupare förståelse för reduktionen som sker i en schaktugn studerades reduktionsbeteendet under icke-isotermiska förhållanden. Särskilt fokus riktades mot effekten av uppvärmningshastigheten och vattenångans halt i reduktionsgasen. Det avgörande att studera reduktionen under icke-isotermiska förhållanden för att optimera processen i schaktugnen. Uppvärmningshastigheten och vattenhalten i reduktionsgasen hade betydande inverkan på reduktionshastigheten, dvs. hastigheten ökade med en ökande uppvärmningshastighet och lägre H2O-halt. Reduktionen startade vid ca 450°C med ren vätgas, men när reduktionsgasen innehöll 5-20 vol%H2O började reduktionen dock först vid ca 525°C. Mikrostrukturen på pelletens ytan hade liknande utseende, oavsett vilken uppvärmningshastigheten som användes. Dessutom visade mikrostrukturens huvudsakliga egenskaper inga tecken på sintring vid ytterligare uppvärmning efter fullständig reduktion. Däremot varierade mikrostrukturen i centrum beroende på uppvärmningshastigheten. Järnfasens utseende ändrade utseende från porös till kompakt struktur när temperaturen översteg 668°C. Bildandet av den kompakta järnstrukturen minskade kraftigt massöverföringen av H2 och H2O till och från reaktionsytan genom produktlagret, vilket påverkade den totala reduktionshastigheten. När reduktionsgasen innehöll mer än 5 vol%H2O blev reduktionen mer komplex, eftersom en mekanismförändring inträffade mellan reduktionsgraderna 0.11-0.15. Denna förändring ledde till ett låg-hastighetsstadium och var kopplad till närvaron av FeO-fasen. Följaktligen är det viktigt att ta hänsyn till denna mekaniskförändring vid modellering och optimering av schaktugnsprocessen. Sammanfattningsvis, den totala reduktionshastigheten ökade med snabbare uppvärmnings hastighet på grund av en ökad kemisk reaktionshastighet, förbättrad massöverföring genom produktlagret, samt en bredare reaktionszon.
Smältbeteenden hos H-DRI undersöktes för att få insikt i de preliminära föroreningshalterna i råstålet vid smältning av H-DRI. Detta gjordes för att bättre förstå behovet av optimering av raffineringsprocessen när den nya H-DRI-EAF processen tas i bruk. Arbetet innehöll både pilot- och laboratorieprover för att systematiskt studera upptag och rening av väte och kväve samt bildandet av inneslutningar vid smältning av H-DRI. Resultaten visade att en stor mängd av det ingående vätet och kvävet i H-DRI var adsorberat på ytan. Under smältningen minskade ytarean avsevärt, och väte- och kvävehalterna minskade nästan omedelbart. De slutliga halterna låg dock runt 4-36 ppm H och 20-30 ppm N, främst på grund av ämnenas ökade löslighet och mobilitet i råstålet vid de ökade temperaturerna. Inneslutningarna som hittades i råstålet efter smältning av 100% H-DRI analyserades. Först studerades den huvudsakliga mekanismen för bildandet av inneslutningarna med hjälp av laboratoriestudier. När H-DRI utsattes för uppvärmning tvingades de kvarvarande oxiderna i den porösa strukturen samman när den porösa strukturen sintrades. Inneslutningarna hade olika storlekar och sammansättning beroende på vilken typ av oxider som smälte samman. Sammansmältningen av de oxidiska partiklarna verkade vara en av de viktigaste mekanismerna för bildandet av inneslutningarna. Inneslutningarna varierade kraftigt i storlek och sammansättning, men majoriteten låg i storleksintervallet >5.6 till 22.4 µm. Dock hittades en betydande mängd inneslutningar som var större än 22.4 µm. Totalt bildades tre olika inneslutningar, och de betecknas som Typ I-1, Typ I-2 och Typ I-3. Inneslutningar av Typ I-1 bildades då den autogena slaggen (O-2) sammansmälte med Mg-rika oxider (O-1) med högt MgO-innehåll. Inneslutning av Typ I-2 bildades när stora mängder autogen slagg sammansmälte med endast ett fåtal Mg-rika oxider. Typ I-3 inneslutningar utgjordes av enstaka Mg-rika oxider som inte hade sammanförts med några andra oxider.
Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2025. , p. 70
Series
TRITA-ITM-AVL ; 2025:43
Keywords [en]
Direct reduced iron, hematite pellet, hydrogen reduction, isothermal reduction, non-isothermal reduction, reaction mechanisms, microstructure, impurities in liquid steel, inclusions formed by melting of DRI
Keywords [sv]
Direktreducerat järn, hematitpellet, vätgasreduktion, isotermisk reduktion, icke-isotermisk reduktion, reaktionsmekanismer, mikrostruktur, orenheter i smält stål, orenheter till följd av smältning av DRI
National Category
Metallurgy and Metallic Materials
Research subject
Materials Science and Engineering
Identifiers
URN: urn:nbn:se:kth:diva-371658ISBN: 978-91-8106-439-1 (print)OAI: oai:DiVA.org:kth-371658DiVA, id: diva2:2009672
Public defence
2025-11-21, Sal B1 / https://kth-se.zoom.us/j/68130437151, Brinellvägen 23, Stockholm, 13:00 (English)
Opponent
Supervisors
2025-10-292025-10-282025-11-05Bibliographically approved
List of papers