Modern machineries are becoming complex cyberphysicalsystems with increasingly intelligent support for processautomation. For the dependability and performance, acombination of measures for fault avoidance, robust architecture,and runtime anomaly handling is necessary. These in turn callfor a formalization of knowledge across different system lifecyclestages and a provision of novel methods and tools for qualifiedsystem synthesis and effective risk management. This paperpresents a model-based approach to qualified process automationfor the operation and maintenance of production systems. Thecontribution is centered on the formalizations of a wide range ofsystem concerns, and thereby a consolidation of the rationalebehind the design of run-time process logic in BPMN2.0. Inparticular, the approach allows an integration of formal systemdescriptions, FTA and FEMA based anomaly analysis, andexecutable process models for effective anomaly detection andtreatment. The approach adopts mature modeling methods andtools through EAST-ADL. In this paper, a prototype tool-chainwith MetaEdit+ Domain-Specific Modeling (DSM) Workbench,HiP-HOPS Analysis Tool and Camunda BPM Platform is alsopresented.
QC 20161019