kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Geographic capabilities and limitations of Industry Foundation Classes
KTH, School of Architecture and the Built Environment (ABE), Real Estate and Construction Management, Geodesy and Satellite Positioning.
KTH, School of Architecture and the Built Environment (ABE), Real Estate and Construction Management, Geodesy and Satellite Positioning.ORCID iD: 0000-0003-0382-9183
2018 (English)In: Automation in Construction, ISSN 0926-5805, E-ISSN 1872-7891, Vol. 96, p. 554-566Article in journal (Refereed) Published
Abstract [en]

Infrastructure design is conducted in a 3D Cartesian coordinate system with the assumption that the Earth is flat and that the scale is constant over the entire project area. Map projections are commonly used to georeference the designed geometries before constructing them on the surface of the Earth. The scale in a map projection varies depending on the position in the map plane, which leads to scale distortions between the designed geometries and the geometries staked out for construction. These distortions are exaggerated for large longitudinal projects such as the construction of roads and railroads because the construction site spans a larger area. Building Information Modeling (BIM) is increasing in popularity as a way to manage information within a construction project. Its use is more widespread in the building industry, but it is currently being adopted by the infrastructure industry as well. The open BIM standard IFC (Industry Foundation Classes) has recently developed support for alignment geometries, and full support for disciplines such as road and railroad construction is underway. This study tests whether the current IFC standard can facilitate georeferencing with sufficiently low distortion for the construction of infrastructure. This is done by performing georeferencing using three different methods, all using the information provided in the IFC schema, and by calculating the scale distortions caused by the different methods. It is concluded that the geographic capabilities of the IFC schema could be improved by adding a separate scale factor for the horizontal plane and support for object-specific map projections.

Place, publisher, year, edition, pages
Elsevier, 2018. Vol. 96, p. 554-566
Keywords [en]
Georeferencing, BIM, IFC
National Category
Construction Management
Identifiers
URN: urn:nbn:se:kth:diva-240760DOI: 10.1016/j.autcon.2018.10.014ISI: 000452345800042Scopus ID: 2-s2.0-85055585349OAI: oai:DiVA.org:kth-240760DiVA, id: diva2:1275639
Funder
Swedish Transport Administration, FUD 6240 FUD 6240
Note

QC 20190107

Available from: 2019-01-07 Created: 2019-01-07 Last updated: 2024-03-18Bibliographically approved
In thesis
1. Connecting digital and physical representations through semantics and geometry
Open this publication in new window or tab >>Connecting digital and physical representations through semantics and geometry
2019 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The fields of geodesy and building information modeling (BIM) meet each other in the intersection between the physical and the digital world. Within the construction industry, the role of geodesy has typically been to describe the position of assets and to transform the geometries of those assets between coordinate systems suitable for design and coordinate systems with a known relation to the Earth. This is not changed by the introduction of BIM but rather emphasized by it, as higher degrees of automation and prefabrication increases the need for strict and non-distorting transformations. The objectoriented aspects of BIM require that captured geodata can be semantically classified and that objects can be reconstructed and extracted from the geodata. In this landscape, geodesy is the bridge between model and reality, connecting the two worlds through both semantics and geometry. This thesis is a comprehensive summary of three papers within these two topics. The first paper describes the geometric transformations required throughout the life cycle of a built asset and assesses the georeferencing capabilities of the open BIM standard Industry Foundation Classes (IFC). The second and third paper propose and showcase a methodology where image-based deep learning is used to extract roadside objects from mobile mapping data. The findings of the first paper include suggestions for how IFC can be improved in order to facilitate better georeferencing, and the second and third paper show that the proposed methodology performs well in comparison to a manual classification.

Abstract [sv]

De två områdena geodesi och byggnadsinformationsmodellering (BIM) möter varandra i skärningspunkten mellan den fysiska och den digitala världen. Inom byggindustrin har geodesins roll historiskt varit att positionsbestämma anläggningar samt att transformera deras geometrier mellan koordinatsystem lämpliga antingen för design eller för inmätning och utsättning. Detta har inte ändrats av att BIM börjat användas, utan det har snarare blivit ännu viktigare då högre nivåer av automatisering och prefabricering ställer högre krav på strikta och icke-deformerande transformationer. De objektorienterade aspekterna av BIM kräver att infångade geodata kan klassificeras semantiskt och att objekt kan återskapas och extraheras från dessa geodata. I detta landskap utgör geodesin en bro mellan modell och verklighet, och sammanlänkar dessa världar genom både semantik och geometri. Denna avhandling är en sammanfattning av tre artiklar inom dessa två områden. Den första artikeln beskriver de geometriska transformationer som krävs genom en anläggnings livscykel och utvärderar georefereringsförmågan hos den öppna BIM-standarden Industry Foundation Classes (IFC). Den andra och tredje artikeln föreslår och demonstrerar en metod där bildbaserad deep learning används för att extrahera vägnära objekt ur data insamlat genom mobile mapping. Slutsatserna från den första artikeln inkluderar förslag på hur IFC kan utvecklas för att möjliggöra bättre georeferering, och de två andra artiklarna visar att den föreslagna metoden presterar väl i jämförelse med en manuell klassificering.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2019. p. 32
Series
TRITA-ABE-DLT ; 1914
National Category
Other Civil Engineering
Research subject
Geodesy and Geoinformatics
Identifiers
urn:nbn:se:kth:diva-250333 (URN)978-91-7873-196-1 (ISBN)
Presentation
2019-05-23, V3, Teknikringen 72, KTH, Stockholm, 10:00 (Swedish)
Opponent
Supervisors
Note

QC 20190429

Available from: 2019-04-29 Created: 2019-04-29 Last updated: 2022-06-26Bibliographically approved
2. Model and Reality: Connecting BIM and the Built Environment
Open this publication in new window or tab >>Model and Reality: Connecting BIM and the Built Environment
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The adoption of building information modeling (BIM) in the architecture, engineering, and construction (AEC) industry is changing the way informa-tion regarding the built environment is created, stored, and exchanged. In short, documents are replaced with databases, processes are automated, and timelines become more circular with an emphasis on managing the life cycles of all manufactured objects. This has both direct and indirect consequences for the fields of geodesy and geographic information. Although geodesy and surveying have played a vital role in the construction process for a long time, new data standards and higher degrees of prefabrication and automation in the actual construction means that the topic of georeferencing must be revisited. In addition, using object oriented data structures means that semantic information must be inferred from geodata such as point clouds and images in order to adequately document existing assets. This thesis addresses the handling of 3D spatial information by analyzing different georeferencing methods and metadata used to describe the quality and characteristics of geodata.The outcomes include a recommendation for how the open BIM standard Industry Foundation Classes (IFC) could be extended to support more robust georeferencing, a suggestion that all standards and exchange formats used forthe built environment should include metadata for tolerance and uncertainty, and a framework that can describe characteristics of 3D spatial data that are not covered by conventional geographic metadata. On the semantic side, this thesis proposes an image-based method for identifying roadside objects in mobile laser scanning (MLS) point clouds, and it also explores the possibilities to train neural networks for point cloud segmentation by creating training data from 3D mesh models used in infrastructure design. Overall, the thesis describes the connection between model and reality, the importance of geodesy and geodetic surveying in this context, and makes contributions to both the geometric and semantic aspects of modeling the built environment.

Abstract [sv]

Införandet av building information modeling (BIM) påverkar informationshanteringen för alla skeden inom den byggda miljöns livscykel; från projektering och konstruktion till underhåll och slutligen avveckling. I korthet är syftet med BIM att ersätta dokumentbaserad kommunikation med modeller, databaser och automatiserade processer. Detta har både direkta och indirekta konsekvenser för områdena geodesi och geoinformatik. Geodesi har länge haft en viktig roll inom byggprocessen, och detta är inget som ändras av BIM-införandet. Nya standarder och mer automatiserade arbetssätt ger dock frågor kring georeferering och geodetiska metadata förnyad relevans. Utöver det så kräver ett objektorienterat arbetssätt att semantik kan utläsas ur insamlade geodata för att möjliggöra modellering av existerande byggnadsverk och anläggningar. I den här avhandlingen analyseras olika georefereringsmetoder samt de metadata som vanligtvis används för att beskriva geodatakvalitet. Resultaten visar att den öppna BIM-standarden Industry Foundation Classes (IFC) kan utökas för att möjliggöra mer robust georeferering. Flertalet standarder som hanterar spatiala data för den byggda miljön saknar också möjlighet att uttrycka kvalitetsmåtten tolerans och osäkerhet. Avhandlingen presenterar även ett ramverk som kan beskriva geometriska egenskaper hos 3D spatiala data som inte täcks av traditionella metadata. På den semantiska sidan presenterar avhandlingen en bildbaserad metod för objektigenkänningi punktmoln framställda genom mobil laserskanning (MLS). Den utforskar även möjligheterna att träna neurala nätverk för punktmolnssegmentering genom att skapa träningsdata från 3D-modeller som används vid projektering. Sammanfattningsvis beskriver avhandlingen hur geodesi och mätningsteknik utgör kopplingen mellan modell och verklighet. Denna koppling innehållerbåde geometri och semantik, och avhandlingen bidrar till den tekniska utvecklingen inom bägge områden.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2021. p. 64
Series
TRITA-ABE-DLT ; 2124
National Category
Other Civil Engineering
Research subject
Geodesy and Geoinformatics, Geodesy
Identifiers
urn:nbn:se:kth:diva-294087 (URN)978-91-7873-892-2 (ISBN)
Public defence
2021-06-04, Videolänk https://kth-se.zoom.us/j/68096006113, Du som saknar dator /datorvana kontakta Milan Horemuz milan.horemuz@abe.kth.se / Use the e-mail address if you need technical assistance, Stockholm, 09:00 (English)
Opponent
Supervisors
Funder
Swedish Transport Administration, FUD 6240
Note

QC 20210511

Available from: 2021-05-11 Created: 2021-05-07 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

fulltext(1076 kB)441 downloads
File information
File name FULLTEXT01.pdfFile size 1076 kBChecksum SHA-512
cfdfc2cf0e042b3f7a59ba63749ad8f24f265b9aeacb2a4ce3f80372edc9a6ba36f30e9c56d3d31c70ec174c199dee52bb7fe12832c3537de0bc11ce50170bc7
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Uggla, GustafHoremuz, Milan

Search in DiVA

By author/editor
Uggla, GustafHoremuz, Milan
By organisation
Geodesy and Satellite Positioning
In the same journal
Automation in Construction
Construction Management

Search outside of DiVA

GoogleGoogle Scholar
Total: 441 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 776 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf