kth.sePublications KTH
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Design, fabrication, and characterization of kinetic-inductive force sensors for scanning probe applications
KTH, School of Engineering Sciences (SCI), Applied Physics, Nanostructure Physics.ORCID iD: 0000-0001-8180-1966
KTH, School of Engineering Sciences (SCI), Applied Physics, Nanostructure Physics.ORCID iD: 0000-0003-2552-6415
KTH, School of Engineering Sciences (SCI), Applied Physics, Nanostructure Physics.ORCID iD: 0000-0001-7469-9975
KTH, School of Engineering Sciences (SCI), Applied Physics, Nanostructure Physics.ORCID iD: 0000-0003-1543-6838
Show others and affiliations
2024 (English)In: Beilstein Journal of Nanotechnology, E-ISSN 2190-4286, Vol. 15, p. 242-255Article in journal (Refereed) Published
Abstract [en]

We describe a transducer for low-temperature atomic force microscopy based on electromechanical coupling due to a strain-dependent kinetic inductance of a superconducting nanowire. The force sensor is a bending triangular plate (cantilever) whose deflection is measured via a shift in the resonant frequency of a high-Q superconducting microwave resonator at 4.5 GHz. We present design simulations including mechanical finite-element modeling of surface strain and electromagnetic simulations of meandering nanowires with large kinetic inductance. We discuss a lumped-element model of the force sensor and describe the role of an additional shunt inductance for tuning the coupling to the transmission line used to measure the microwave resonance. A detailed description of our fabrication is presented, including information about the process parameters used for each layer. We also discuss the fabrication of sharp tips on the cantilever using focused electron beam-induced deposition of platinum. Finally, we present measurements that characterize the spread of mechanical resonant frequency, the temperature dependence of the microwave resonance, and the sensor’s operation as an electromechanical transducer of force.

Place, publisher, year, edition, pages
Frankfurt am Main, Germany: Beilstein Institut , 2024. Vol. 15, p. 242-255
Keywords [en]
atomic force microscopy, force sensing, kinetic inductance, optomechanics, superconductivity
National Category
Nano Technology
Identifiers
URN: urn:nbn:se:kth:diva-343570DOI: 10.3762/bjnano.15.23ISI: 001162781300001Scopus ID: 2-s2.0-85191661029OAI: oai:DiVA.org:kth-343570DiVA, id: diva2:1839113
Note

QC 20240301

Available from: 2024-02-20 Created: 2024-02-20 Last updated: 2024-11-18Bibliographically approved
In thesis
1. Kinetic inductive electromechanical transduction for atomic force microscopy
Open this publication in new window or tab >>Kinetic inductive electromechanical transduction for atomic force microscopy
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The Atomic Force Microscope (AFM) is considered one of the most powerful tools in surface science thanks to its ability to sense forces at the nanoscale and image surfaces with high lateral resolution. The AFM employs a microcantilever with a sharp tip as a force transducer operated in close proximity to a surface. Nanoscale force sensing in AFM is achieved by measuring the motion of the cantilever under the influence of the localized tip-surface interaction. Cavity optomechanics provides a framework to measure cantilever motion at the fundamental limit of sensitivity. This thesis applies the principles of cavity optomechanics to realize an integrated force sensor fulfilling the requirements of low-temperature AFM applications, with the goal of enhancing the sensitivity and speed of imaging. The optical cavity is replaced by a superconducting microwave resonant circuit and the optomechanical detection principle is based on a novel type electromechanical coupling developed by our group. Compressive or tensile surface strain produced by the bending of the microcantilever, causes a change in the kinetic inductance of a superconducting meandering nanowire, thereby changing the resonant frequency of a high-Q microwave mode.We discuss the design and fabrication of these AFM force sensors, including the deposition of sharp, conducting tips. The compact, integrated microwave resonant circuit is realized in a fully coplanar layout from a single superconducting NbTiN thin film deposited on a SiN layer on a Si substrate. The microcantilever beam is formed from the SiN layer which is released from the Si substrate.

We present experimental data characterizing the properties of the microwave resonator, the cantilever's flexural eigenmode, and the interaction between the two through the kinetic-inductive electromechanical coupling. We use different techniques to detect motion in a manner suitable for the typical modes of operation in traditional AFM, as well as additional methods specific to the electromechanical detection. We also integrated the force sensors into a prototype low temperature AFM scanning system built inside a dilution refrigerator. With this prototype we demonstrate the detection of tip-surface force gradients, and we show our initial attempts at imaging with electromechanical detection of motion.

Abstract [sv]

Atomkraftsmikroskopet (AFM) anses vara ett av de mest kraftfulla verktygen inom ytvetenskap tack vare dess förmåga att detektera krafter i nanoskala och avbilda ytor med hög lateral upplösning. AFM använder en mikro-vipparm med en skarp spets som en kraftgivare som drivs i närheten av en yta. Kraftavkänning vid nanoskala i AFM uppnås genom att mäta rörelsen hos vipparmen under påverkan av den lokaliserade spets-yta-interaktionen.Kavitetsoptomekanik tillhandahåller ett ramverk för att detektera vipparmens rörelse vid den grundläggande känslighetens gräns.

Denna avhandling tillämpar principerna för kavitetsoptomekanik för att implementera en integrerad kraftsensor som uppfyller kraven för AFM-applikationer vid låga temperaturer, med målet att förbättra känsligheten och hastigheten för avbildning för AFM.Den optiska kaviteten ersätts av en supraledande mikrovågsresonanskrets och den optomekaniska detekteringsprincipen är baserad på en ny typ av elektromekanisk koppling utvecklad av vår grupp. Kompressions- eller dragpåkänning som produceras av böjningen av en oscillerande mikro-vipparmen orsakar en förändring i den kinetiska induktansen hos en slingrande supraledande nanotråd, och ändrar därigenom resonansfrekvensen för ett hög-Q mikrovågsmod.Vi diskuterar design- och tillverkningsprocesserna för att utveckla dessa sensorer, inklusive avsättning av vassa, ledande spetsar. Mikrovågsresonanskretsen är förverkligad i en helt koplanär arrangemang från ett tunn-film lager av supraledande NbTiN avsatt på ett SiN-skikt på ett Si-substrat. SiN-skiktet frigörs sedan från substratet för att bilda mikro-vipparmen.

Vi presenterar experimentell data som karakteriserar egenskaperna hos mikrovågsresonatorn, vipparmens böjningsegenmod och interaktionen mellan de två genom den kinetisk-induktiva elektromekaniska kopplingen.Vi presenterar olika mättekniker för att implementera rörelsedetektering för de typiska driftsätten i traditionell AFM, samt ytterligare metoder specifika för elektromekanisk detektering.Slutligen presenterar vi utvecklingen av en prototyp för AFM-skanningssystem för låga temperaturer, byggt inuti ett utspädningskylskåp. Med denna prototyp demonstrerar vi detektering av spets-ytkraftgradienter och initiala försök till avbildning med elektromekanisk detektering av rörelse.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. p. 84
Series
TRITA-SCI-FOU ; 2024:32
Keywords
optomechanics, electromechanics, atomic force microscopy, quantum-limited sensing, force sensing, superconductivity, kinetic inductance, optomekanik, elektromekanik, atomkraftsmikroskopi, kvantbegränsad avkänning, kraftavkänning, supraledning, kinetisk induktans
National Category
Physical Sciences
Research subject
Physics, Material and Nano Physics
Identifiers
urn:nbn:se:kth:diva-346576 (URN)978-91-8040-964-3 (ISBN)
Public defence
2024-06-14, FA32, Albanova, Roslagstullsbacken 21, Stockholm, 09:00 (English)
Opponent
Supervisors
Funder
EU, Horizon 2020, 828966Swedish Foundation for Strategic Research, ITM17-0343
Note

QC 2024-05-21

Available from: 2024-05-21 Created: 2024-05-20 Last updated: 2024-06-10Bibliographically approved
2. Cavity optomechanics for sensing force gradients in atomic force microscopy
Open this publication in new window or tab >>Cavity optomechanics for sensing force gradients in atomic force microscopy
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In this thesis we investigate force gradient sensing based on the principles of cavity optomechanics, specifically in the context of atomic force microscopy (AFM). Tip-surface forces perturb the motion of a cantilever and the cantilever's change of motion is detected with an integrated compact low-noise motion sensor based on cavity optomechanics.  

To this end we design and fabricate probes on a wafer scale. The probes consist of a cantilever in the shape of a triangular Si-N cantilever released from a substrate of Si. We fabricate low-frequency, 700 kHz, cantilevers as well as high-frequency, 5 MHz, cantilevers allowing for operation in the resolved sideband regime. At the base of the cantilever we fabricate a superconducting microwave resonant circuit (cavity) patterned from a thin film of Nb-Ti-N. The microwave circuit has a resonance frequency of 4-5 GHz. The coupling between the cantilever and the microwave circuit is based on strain modulation of the kinetic inductance of a meandering nanowire placed at the base of the cantilever. The mechanical motion can thus be detected through the modulation of the cavity resonance frequency. 

We characterise the mechanical mode as well as the microwave circuit and demonstrate the novel strain dependent coupling. We investigate the losses of the microwave circuit and find that in the temperature range 1.7-6 K the losses are not dominated by thermal-equilibrium quasi-particles. We also explore the possibility of using the nonlinear current dependence of the kinetic inductance as means to parametrically amplify the motional sidebands produced by the optomechanical interaction. Finally, with a prototype scanner assembly for low-temperature AFM we detect force gradients and image a surface implementing a two-tone pumping scheme for the microwave circuit while actuating the mechanical resonator.

Abstract [sv]

I denna avhandling undersöker vi kraftgradientavkänning baserat på principerna av optomekanik, specifikt i kontexten av atomkraftmikroskopi (AFM). Tipp-ytkrafter förändrar en vipparms rörelse. Denna förändring detekteras med hjälp av en integrerad kompakt kraftsensor med lågt brus baserat på kavitetsoptomekanik.

För detta ändamål designar och tillverkar vi sensorer på kiselplattor. Sensorerna består av triangulära Si-N vipparmar frigjorda från ett substrat av Si. Vi tillverkar låg-frekventa, 700 kHz, vipparmar såväl som hög-frekventa, 5 MHz, vipparmar där de senare placerar sensorn i den 'goda kavitetsgränsen'. Vid basen av vipparmen tillverkar vi en supraledande mikrovågsresonanskrets formad från en tunn film av Nb-Ti-N. Mikrovågskretsen har en resonansfrekvens av 4-5 GHz. Kopplingen mellan vipparmen och mikrovågskretsen är baserat på töjningmodulering av den kinetiska induktansen i den slingrande nanotråden placerad vid basen av vipparmen. Den mekaniska rörelsen kan på så sätt detekteras genom moduleringen av kavitetens resonansfrekvens.

Vi karakteriserar den mekaniska moden såväl som mikrovågskretsen och visar på den nya töjningsberoende kopplingen. Vi undersöker förlusterna av mikrovågskretsen och finner att i temperaturintervallet 1.7-6 K så domineras förlusterna inte av kvasi-partiklar i termisk jämvikt. Vi undersöker också möjligheten till att använda det icke-linjära strömberoendet från den kinetiska induktansen som medel att parametriskt förstärka rörelsesidobanden producerade från den optomekaniska interaktionen. Slutligen, med en prototyp skannerenhet för AFM vid låga temperaturer detekterar vi kraftgradienter och avbildar en yta genom att implementera ett pump-arrangemang med två toner för mikrovågskretsen samtidigt som den mekaniska resonatorn drivs.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. p. 84
Series
TRITA-SCI-FOU ; 2024:56
Keywords
force gradient sensing, cavity optomechanics, atomic force microscopy, kinetic inductance, superconductivity, kraftgradientavkänning, kavitetsoptomekanik, atomkraftmikroskopi, kinetisk induktans, supraledning
National Category
Physical Sciences
Research subject
Physics, Material and Nano Physics
Identifiers
urn:nbn:se:kth:diva-356559 (URN)978-91-8106-130-7 (ISBN)
Public defence
2024-12-13, FD41, Roslagstullsbacken 21, AlbaNova, Stockholm, 09:00 (English)
Opponent
Supervisors
Funder
Swedish Foundation for Strategic Research, ITM17-0343EU, Horizon 2020, 828966
Note

QC 2024-11-19

Available from: 2024-11-19 Created: 2024-11-18 Last updated: 2025-02-06Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Roos, August K.Scarano, ErmesArvidsson, ElisabetHolmgren, ErikHaviland, David B.

Search in DiVA

By author/editor
Roos, August K.Scarano, ErmesArvidsson, ElisabetHolmgren, ErikHaviland, David B.
By organisation
Nanostructure Physics
Nano Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 289 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf