The paper addresses the aeromechanical design of lightweight fan blades for an electric fan thruster. It explores the use of carbon-fiber reinforced composites to reduce overall weight and enhance aeroelastic performance, particularly in terms of flutter stability. A comparison is made between the baseline metallic fan blade and different laminate stackups in the composite blade. The results indicate that when carefully tailored, composite fan blades can potentially provide higher aeroelastic stability than the reference metallic blade. At nodal diameters where disk motion dominates the mode shape, the aeroelastic response is less dependent on the choice of stackup. Additionally, the study demonstrates that choosing the appropriate laminate stackup can avoid potentially dangerous resonant crossings throughout the flight envelope. Several prototype blades were manufactured and tested in a vibration test rig to assess manufacturability and validate the numerical models used in blade design.
QC 20241115