kth.sePublications
Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Blomqvist, Kristina
    et al.
    KTH, School of Biotechnology (BIO), Wood Biotechnology.
    Djerbi, Soraya
    KTH, School of Biotechnology (BIO), Wood Biotechnology.
    Aspeborg, Henrik
    KTH, School of Biotechnology (BIO), Wood Biotechnology.
    Teeri, Tuula
    KTH, School of Biotechnology (BIO), Wood Biotechnology.
    Cellulose Biosynthesis in Forest Trees2007In: Cellulose: Molecular and Structural Biology: Selected Articles on the Synthesis, Structure, and Applications of Cellulose / [ed] R. Malcolm Brown and Inder M. Saxena, Dordrecht: Springer Netherlands, 2007, p. 85-106Chapter in book (Other academic)
    Abstract [en]

    Wood formation is a fundamental biological process of significant economic andcommercial interest. During wood formation, most glucose from the carbohydratemetabolism is channeled to cellulose in the secondary cell walls. The cellulose microfibrils associate with hemicellulose, proteins, and lignin to form the strong and flexiblebiocomposite known as wood. As the main wood component, cellulose is essential forthe survival of trees and for their exploitation by man.In spite of this, the molecular details of cellulose biosynthesis have remained obscure in all plants. In particular, the toughness of wood cells makes it hard to isolateactive enzymes and study cellulose synthesis in trees. Functional genomics providespowerful new tools to study complex metabolic processes. In this way, 18 CesA geneshave been recently identified in the genome sequence of Populus trichocarpa.Expression profiling during wood formation has shown that four of these genesare specifically upregulated during xylogenesis and/or tension wood formation. Othergenes that follow the same expression pattern as the wood-related CesA genes encodethe putative Korrigan ortholog PttCel9A and a novel microtubule associated proteinPttMAP20. Cell suspension cultures of hybrid aspen with elevated expression of thesecondary cell wall specific PttCesA genes have been used for efficient in vitro synthesisof cellulose, which will facilitate future studies of this challenging process in trees.

  • 2. Fink, H.
    et al.
    Bodin, A.
    Ahrenstedt, Lage
    KTH, School of Biotechnology (BIO), Wood Biotechnology.
    Brumer, Harry
    KTH, School of Biotechnology (BIO), Wood Biotechnology.
    Risberg, B.
    Enhanced endothelial cell attachment on RGD-modified bacterial cellulose2008In: World Biomater. Congr., 2008Conference paper (Refereed)
    Abstract [en]

    Studies show so far that BC is a promising material for use in the cardiovascular research area. The possibility to easy modify the surface of the BC makes it a good candidate for pre-seeding in vitro with or recruiting of endothelial cell in vivo.

  • 3.
    Jonsson Rudsander, Ulla
    KTH, School of Biotechnology (BIO), Wood Biotechnology.
    Functional studies of a membrane-anchored cellulase from poplar2007Doctoral thesis, comprehensive summary (Other scientific)
    Abstract [en]

    Cellulose in particular and wood in general are valuable biomaterials for humanity, and cellulose is now also in the spotlight as a starting material for the production of biofuel. Understanding the processes of wood formation and cellulose biosynthesis could therefore be rewarding, and genomics and proteomics approaches have been initiated to learn more about wood biology. For example, the genome of the tree Populus trichocarpa has been completed during 2006. A single-gene approach then has to follow, to elucidate specific patterns and enzymatic details.

    This thesis depicts how a gene encoding a membrane-anchored cellulase was isolated from Populus tremula x tremuloides Mich, how the corresponding protein was expressed in heterologous hosts, purified and characterized by substrate analysis using different techniques. The in vivo function and modularity of the membrane-anchored cellulase was also addressed using overexpression and complementation analysis in Arabidopsis thaliana.

    Among 9 genes found in the Populus EST database, encoding enzymes from glycosyl hydrolase family 9, two were expressed in the cambial tissue, and the membrane-anchored cellulase, PttCel9A1, was the most abundant transcript. PttCel9A1 was expressed in Pichia pastoris, and purified by affinity chromatography and ion exchange chromatography. The low yield of recombinant protein from shake flask experiments was improved by scaling up in the fermentor. PttCel9A1 was however highly heterogenous, both mannosylated and phosphorylated, which made the protein unsuitable for crystallization experiments and 3D X-ray structure determination. Instead, a homology model using a well-characterized, homologous bacterial enzyme was built. From the homology model, interesting point mutations in the active site cleft that would highlight the functional differences of the two proteins could be identified. The real-time cleavage patterns of cello-oligosaccharides by mutant bacterial enzymes, the wildtype bacterial enzyme and PttCel9A1 were studied by 1H NMR spectroscopy, and compared with results from HPAEC-PAD analysis. The inverting stereochemistry for the hydrolysis reaction of the membrane-anchored poplar cellulase was also determined by 1H NMR spectroscopy, and it was concluded that transglycosylation in vivo is not a possible scenario.

    The preferred in vitro polymeric substrates for PttCel9A1 were shown to be long, low-substituted cellulose derivatives, and the endo-1,4--glucanase activity was not extended to branched or mixed linkage substrates to detectable levels. This result indicates an in vivo function in the hydrolysis of “amorphous” regions of cellulose, either during polymerization or crystallization of cellulose. In addition, overexpressing PttCel9A1 in A. thaliana, demonstrated a correlation with decreased crystallinity of cellulose. The significance of the different putative modules of PttCel9A1 was investigated by the construction of hybrid proteins, that were introduced into a knock-out mutant of A. thaliana, and the potential complementation of the phenotype was examined. A type B plant cellulase catalytic domain could not substitute for a type A plant cellulase catalytic domain, although localization and interaction motifs were added to the N- and C-terminus.

    Download full text (pdf)
    FULLTEXT01
  • 4.
    Kallas, Åsa
    KTH, School of Biotechnology (BIO), Wood Biotechnology.
    Heterologous expression, characterization and applications of carbohydrate active enzymes and binding modules2006Doctoral thesis, comprehensive summary (Other scientific)
    Abstract [en]

    Wood and wood products are of great economical and environmental importance, both in Sweden and globally. Biotechnology can be used both for achieving raw material of improved quality and for industrial processes such as biobleaching. Despite the enormous amount of carbon that is fixed as wood, the knowledge about the enzymes involved in the biosynthesis, re-organization and degradation of plant cell walls is relatively limited. In order to exploit enzymes more efficiently or to develop new biotechnological processes, it is crucial to gain a better understanding of the function and mechanism of the enzymes. This work has aimed to increase the knowledge about some of the enzymes putatively involved in the wood forming processes in Populus. Xyloglucan endotransglycosylases and a putative xylanase represent transglycosylating and hydrolytic enzymes, respectively. Carbohydrate binding modules represent non-catalytic modules, which bind to the substrate.

    Among 24 genes encoding for putative xyloglucan endotransglycosylases or xyloglucan endohydrolases that were identified in the Populus EST database, two were chosen for further studies (PttXTH16-34 and PttXTH16-35). The corresponding proteins, PttXET16-34 and PttXET16-35, were expressed in P. pastoris, purified and biochemically characterized. The importance of the N-glycans was investigated by comparing the recombinant wild-type proteins with their deglycosylated counterparts. In order to obtain the large amounts of PttXET16-34 that were needed for crystallization and development of biotechnological applications, the conditions for the large-scale production of PttXET16-34 in a fermenter were optimized.

    In microorganisms, endo-(1,4)-β-xylanases are important members of the xylan degrading machinery. These enzymes are also present in plants where they might fulfill a similar, but probably more restrictive function. One putative endo-(1,4)-β-xylanase, denoted PttXYN10A, was identified in the hybrid aspen EST library. Sequence analysis shows that this protein contains three putative carbohydrate-binding modules (CBM) from family 22 in addition to the catalytic module from GH10. Heterologous expression and reverse genetics were applied in order to elucidate the function of the catalytic module as well as the binding modules of PttXYN10A.

    Just as in microorganisms, some of the carbohydrate active enzymes from plants have one or more CBM attached to the catalytic module. So far, a very limited number of plant CBMs has been biochemically characterized. A detailed bio-informatic analysis of the CBM family 43 revealed interesting modularity patterns. In addition, one CBM43 (CBM43PttGH17_84) from a putative Populus b-(1,3)-glucanase was expressed in E. coli and shown to bind to laminarin (β-(1,3)-glucan), mixed-linked β-(1,3)(1,4)-glucans and crystalline cellulose. Due to their high specificity for different carbohydrates, CBMs can be used as probes for the analysis of plant materials. Generally, they are more specific than both staining techniques and carbohydrate-binding antibodies. We have used cellulose- and mannan binding modules from microorganisms as tools for the analysis of intact fibers as well as processed pulps.

    Download full text (pdf)
    FULLTEXT01
  • 5. Kumar, Manoj
    et al.
    Thammannagowda, Shivegowda
    Bulone, Vincent
    KTH, School of Biotechnology (BIO), Wood Biotechnology.
    Chiang, Vincent
    Han, Kyung-Hwan
    Joshi, Chandrashekhar P.
    Mansfield, Shawn D.
    Mellerowicz, Ewa
    Sundberg, Bjorn
    Teeri, Tuula T.
    KTH, School of Biotechnology (BIO), Wood Biotechnology.
    Ellis, Brian E.
    An update on the nomenclature for the cellulose synthase genes in Populus2009In: Trends in Plant Science, ISSN 1360-1385, E-ISSN 1878-4372, Vol. 14, no 5, p. 248-254Article, review/survey (Refereed)
    Abstract [en]

    Cellulose synthase (CesA) is a central catalyst in the generation of the plant cell wall biomass and is, therefore, the focus of intense research. Characterization of individual CesA genes from Populus species has led to the publication of several different naming conventions for CesA gene family members in this model tree. To help reduce the resulting confusion, we propose here a new phylogeny-based CesA nomenclature that aligns the Populus CesA gene family with the established Arabidopsis thaliana CesA family structure.

1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf