kth.sePublications
Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
Refine search result
12345 1 - 50 of 223
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Agrios, Alexander George
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Physical Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Cesar, I.
    Comte, P.
    Nazeeruddin, M. K.
    Grätzel, M.
    Nanostructured composite films for dye-sensitized solar cells by electrostatic layer-by-layer deposition2006In: Chemistry of Materials, ISSN 0897-4756, E-ISSN 1520-5002, Vol. 18, no 23, p. 5395-5397Article in journal (Refereed)
    Abstract [en]

    The possibilities for making nanocomposite semiconductor films for DSC using the ELBL method was investigated. Coated slides were cut in half vertically giving two strips that can be subjected to different treatments for comparison. The electrode was heated to 450 °C for 30 min and then Cooled to 80 °C. Scanning electron microscopy of a sintered film with 5 cycles of TiO2 nanoparticles shows that the particles are well distributed and completely cover the transparent conducting oxide substrate. Spectroscopic measurements of a dye-coated film in acetonitrile found a dye concentration within the film of 0.15 mM based on an extinction coefficient. The solar cell including a scattering layer had more than double the current of the transparent layer-only cell. It was observed that ELBL method can produce TiO2 films for DSC with high efficiencies at low thickness.

  • 2.
    Ahmad, Shargeel
    et al.
    Dalian Univ Technol, Inst Artificial Photosynth, State Key Lab Fine Chem, Dalian 116024, Peoples R China..
    Liu, Jinxuan
    Dalian Univ Technol, Inst Artificial Photosynth, State Key Lab Fine Chem, Dalian 116024, Peoples R China..
    Gong, Chenghuan
    Dalian Univ Technol, Inst Artificial Photosynth, State Key Lab Fine Chem, Dalian 116024, Peoples R China..
    Zhao, Jianzhang
    Dalian Univ Technol, Inst Artificial Photosynth, State Key Lab Fine Chem, Dalian 116024, Peoples R China..
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry. Dalian Univ Technol, Inst Artificial Photosynth, State Key Lab Fine Chem, Dalian 116024, Peoples R China..
    Photon Up-Conversion via Epitaxial Surface-Supported Metal-Organic Framework Thin Films with Enhanced Photocurrent2018In: ACS Applied Energy Materials, E-ISSN 2574-0962, Vol. 1, no 2, p. 249-253Article in journal (Refereed)
    Abstract [en]

    We report a new triplet-triplet annihilation photon up-conversion (TTA-UC) system using an epitaxial Zn-perylene surface-supported metal-organic framework (SURMOF) grown on metal oxide surface as "emitter", and a platinum octaethylporphyrin (PtOEP) as "sensitizer" in [Co(bpy)(3)](2+/3+) acetonitrile solution. It has been demonstrated that the photocurrent can be significantly enhanced relative to epitaxial Zn-perylene SURMOF due to the TTA-UC mechanism. This initial result holds promising applications toward SURMOF-based solar energy conversion devices.

  • 3.
    Ahmad, Shargeel
    et al.
    Dalian Univ Technol, Inst Artificial Photosynthesis, State Key Lab Fine Chem, Dalian 116024, Peoples R China..
    Liu, Jinxuan
    Dalian Univ Technol, Inst Artificial Photosynthesis, State Key Lab Fine Chem, Dalian 116024, Peoples R China..
    Ji, Wei
    Dalian Univ Technol, Inst Artificial Photosynthesis, State Key Lab Fine Chem, Dalian 116024, Peoples R China..
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry. Dalian Univ Technol, Inst Artificial Photosynthesis, State Key Lab Fine Chem, Dalian 116024, Peoples R China.;KTH Royal Inst Technol, Sch Chem Sci & Engn, Dept Chem, S-10044 Stockholm, Sweden..
    Metal-Organic Framework Thin Film-Based Dye Sensitized Solar Cells with Enhanced Photocurrent2018In: Materials, E-ISSN 1996-1944, Vol. 11, no 10, article id 1868Article in journal (Refereed)
    Abstract [en]

    Metal-organic framework thin film-based dye sensitized solar cell is fabricated with highly oriented, crystalline, and porous Zn-perylene metal-organic framework (MOF) thin film (SURMOF) which is integrated with Bodipy embedded in poly(methyl methacrylate). It has been demonstrated that the photocurrent can be enhanced by a factor of 5 relative to Zn-perylene MOF thin film due to triplet-triplet annihilation up-conversion between the Bodipy/PMMA sensitizer and the Zn-perylene MOF thin film acceptor using Co(bpy)(3)(2+/3+) as redox mediator.

  • 4.
    Andersson, Samir
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Zou, Dapeng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Zhang, Rong
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Sun, Shiguo
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Åkermark, Björn
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Selective Positioning of CB 8 on Two Linked Viologens and Electrochemically Driven Movement of the Host Molecule2009In: European Journal of Organic Chemistry, ISSN 1434-193X, E-ISSN 1099-0690, no 8, p. 1163-1172Article in journal (Refereed)
    Abstract [en]

    The binding interactions between cucurbit[8]uril (CB[8]) and a dicationic guest N,N-dimethyl-3,3'-dimethyl-4,4'-bipyridinium (DMV2+) have been investigated by various experimental techniques including NMR, ESI-MS, and UV/Vis and fluorescence spectroscopy. In a three-component system consisting of CB[81, N,N-dimethyl-4,4'-bipyridinium (MV2+) and DMV2+, CB[8] was found to exhibit a higher binding affinity to DMV2+ than to MV2+, When DMV2+ was connected to MV2+ by an alkyl chain, the first equiv. of CB[8] could be selectively positioned on the DMV2+ moiety, and then a second equiv. of CB[8] was positioned on the MV2+ moiety. Spectroelectrochemical studies showed that upon the reduction of this system at -0.6 V vs. AgCl, the CB[8] could move from the DMV2+ moiety to the MV+center dot radical, which formed a dimer inside the CB[8] cavity. Molecular oxygen quenched the dimer, and the CB[8] moved back to the DMV2+ moiety, indicating it molecular movement driven by electrochemistry. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009)

  • 5.
    Bhagavathiachari, Muthuraaman
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Elumalai, V.
    Gao, Jiajia
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Polymer-doped molten salt mixtures as a new concept for electrolyte systems in dye-sensitized solar cells2017In: ACS Omega, E-ISSN 2470-1343, Vol. 2, no 10, p. 6570-6575Article in journal (Refereed)
    Abstract [en]

    A conceptually new polymer electrolyte for dye-sensitized solar cells is reported and investigated. The benefits of using this type of electrolyte based on ionic liquid mixtures (ILMs) and room temperature ionic liquids are highlighted. Impedance spectroscopy and transient electron measurements have been used to elucidate the background of the photovoltaic performance. Even though larger recombination losses were noted, the high ion mobility and conductivity induced in the ILMs by the added polymer result in enhanced overall conversion efficiencies.

  • 6.
    Bhagavathiachari, Muthuraaman
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Elumalai, Viswanathan
    Vlachopoulos, Nick
    Safdari, Majid
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Gao, Jiajia
    KTH, School of Chemical Science and Engineering (CHE), Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Gardner, James M.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    A quasi-liquid polymer-based cobalt redox mediator electrolyte for dye-sensitized solar cells2013In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 15, no 40, p. 17419-17425Article in journal (Refereed)
    Abstract [en]

    Recently, cobalt redox electrolyte mediators have emerged as a promising alternative to the commonly used iodide/triiodide redox shuttle in dye-sensitized solar cells (DSCs). Here, we report the successful use of a new quasi-liquid, polymer-based electrolyte containing the Co3+/Co2+ redox mediator in 3-methoxy propionitrile solvent in order to overcome the limitations of high cell resistance, low diffusion coefficient and rapid recombination losses. The performance of the solar cells containing the polymer based electrolytes increased by a factor of 1.2 with respect to an analogous electrolyte without the polymer. The performances of the fabricated DSCs have been investigated in detail by photovoltaic, transient electron measurements, EIS, Raman and UV-vis spectroscopy. This approach offers an effective way to make high-performance and long-lasting DSCs.

  • 7. Bi, D.
    et al.
    Xu, Bo
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. Dalian University of Technology (DUT), China.
    Gao, P.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. Dalian University of Technology (DUT), China.
    Grätzel, M.
    Hagfeldt, A.
    Facile synthesized organic hole transporting material for perovskite solar cell with efficiency of 19.8%2016In: Nano Energy, ISSN 2211-2855, Vol. 23, p. 138-144Article in journal (Refereed)
    Abstract [en]

    The exploration of alternative molecular hole-transporting materials (HTMs) specifically for high performance perovskite solar cells (PSCs) is a relatively recent research area. Aiming for further increasing the 'efficiency-cost ratio' of PSCs, we developed a spiro[fluorene-9,9'-xanthene] based HTM (X59) via two-step synthesis from commercial precursors for perovskite solar cells (PSCs) that works as effectively as the well-known HTM-Spiro-OMeTAD-based device under the same conditions. The molecular structure was analyzed by X-ray crystallography indicating a similar packing regime as for Spiro-OMeTAD. An impressive PCE of 19.8% was achieved by using X59 as HTM in PSC, which can compete with the record PCE of 20.8% by using the state-of-the-art-HTM Spiro-OMeTAD (Tress et al., 2016) [1]. The optimized devices employing X59 as HTM exhibited minimized hysteresis, excellent reproducibility and reasonable stability under dark and dry conditions. The present finding highlights the potential of spiro-type HTM for high performance PSCs and paves the way to a much deceased fabrication cost for potential commercialization of perovskite solar panels.

  • 8.
    Boschloo, Gerrit K.
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Physical Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Edvinsson, Tomas
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Physical Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Hagfeldt, Anders
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Physical Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Dye-Sensitized Nanostructured ZnO Electrodes for Solar Cell Applications2006In: Nanostructured Materials for Solar Energy Conversion, Elsevier, 2006, p. 227-254Chapter in book (Other academic)
    Abstract [en]

    This chapter describes dye-sensitized nanostructured ZnO electrodes for solar cell applications. Dye-sensitized nanostructured solar cells (DNSCs) based on nanostructured metal oxide films have attracted much attention in recent years. This chapter explains the schematic representation of the DNSC. The performance of dye-sensitized ZnO solar cells in terms of solar-to-electrical energy conversion efficiencies is so far significantly lower than that of TiO2, reaching currently about 4-5%. An analysis of the energetics and kinetics of ZnO-based DNSCs suggests that this is mainly because of the lesser degree of optimization in case of ZnO compared to TiO2-based DNSCs. A large potential exists to improve on the performance of dye-sensitized ZnO solar cells by learning how to use new types of anchoring groups and controlling the chemistry at the oxide/dye/electrolyte interface. This, in combination with the possibilities to tailor-make ZnO materials, manifests the opportunities for future research and development of these devices.

  • 9.
    Brinck, Tore
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Liljenberg, Magnus
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    The use of quantum chemistry for mechanistic analyses of SeAR reactions2015In: Arene Chemistry: Reaction Mechanisms and Methods for Aromatic Compounds, Wiley , 2015, p. 83-105Chapter in book (Other academic)
    Abstract [en]

    In this chapter, we review the current understanding of electrophilic aromatic substitution (SEAr) based on the latest experimental and quantum chemical studies. In addition, the most reliable and computationally effective methods for predicting regioselectivity and relative reactivity of SEAr are evaluated and described. The mechanism of nitration is analyzed in detail based on recent quantum chemical studies. In the gas phase, the reaction often has a contribution from a single-electron transfer (SET), and this contribution increases with the activation tendency of the aromatic substrate. The solution reaction lacks a driving force for SET, and the reaction has an early transition state that resembles an O-C coordinated π-complex in structure. In contrast, halogenation with molecular chlorine as the electrophile proceeds via a much later transition state that is more similar to the α-complex. Among the different reactivity descriptors that have been used to analyze regioselectivity and relative reactivity of SEAr, the average local ionization energy seems to have the best predictive power. As is generally the case for descriptor-based approaches, it is best suited for analyzing SEAr with early transition states. The α-complex approach has emerged as an alternative to reactivity descriptors for predicting regioselectivity. It is based on the assumption that the relative α-complex energies are similar to the corresponding transition state energies and thus reflect the positional selectivity for an aromatic substrate when reacting with a particular electrophile. The method provides quantitative predictions for halogenations but is not reliable for nitrations.

  • 10.
    Brinck, Tore
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry. University of New Orleans.
    Murray, JS
    Politzer, P
    Octanol Water Partition-Coefficients Expressed In Terms Of Solute Molecular-Surface Areas And Electrostatic Potentials1993In: Journal of Organic Chemistry, ISSN 0022-3263, E-ISSN 1520-6904, Vol. 58, no 25, p. 7070-7073Article in journal (Refereed)
    Abstract [en]

    For 70 molecules of various types and sizes, it is shown that their experimental octanol/water partition coefficients can be represented quantitatively in terms of the solute's molecular surface area in conjunction with two statistically-based quantities calculated from its surface electrostatic potential; the latter are the average deviation of the potential and its total variance. An ab initio SCF approach was used to compute STO-3G*-optimized geometries and STO-5G* electrostatic potentials.

  • 11. Cao, S.
    et al.
    Wu, Y.
    Hou, J.
    Zhang, B.
    Li, Z.
    Nie, X.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    3D Porous Pyramid Heterostructure Array Realizing Efficient Photo-Electrochemical Performance2019In: Advanced Energy Materials, ISSN 1614-6832, E-ISSN 1614-6840, article id 1902935Article in journal (Refereed)
    Abstract [en]

    Direct photo-electrochemical (PEC) water splitting is of great practical interest for developing a sustainable energy systems, but remains a big challenge owing to sluggish charge separation, low efficiency, and poor stability. Herein, a 3D porous In2O3/In2S3 pyramid heterostructure array on a fluorine-doped tin oxide substrate is fabricated by an ion exchange–induced synthesis strategy. Based on the synergistic structural and electronic modulations from density functional theory calculations and experimental observations, 3D porous In2O3/In2S3 photoanode by the protective layer delivers a low onset potential of ≈0.02 V versus reversible hydrogen electrode (RHE), the highest photocurrent density of 8.2 mA cm−2 at 1.23 V versus RHE among all the In2S3 photoanodes reported to date, an incident photon-to-current efficiency of 76% at 400 nm, and high stability over 20 h for PEC water splitting are reported. This work provides an alternative promising prototype for the design and construction of novel heterostructures in robust PEC water splitting applications.

  • 12. Cappel, U. B.
    et al.
    Gibson, E. A.
    Hagfeldt, Anders
    KTH, School of Chemical Science and Engineering (CHE), Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. Uppsala University, Sweden.
    Boschloo, G.
    Dye regeneration by Spiro-MeOTAD in solid state dye-sensitized solar cells studied by photoinduced absorption spectroscopy and spectroelectrochemistry2009In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 113, no 15, p. 6275-6281Article in journal (Refereed)
    Abstract [en]

    Photoinduced absorption (PIA) spectroscopy is presented as a tool for the systematic study of dye regeneration and pore filling in solid state dye-sensitized solar cells (DSC). Oxidation potentials and extinction coefficients for oxidized species of the perylene dye, ID28, on TiO(2) and of the hole conductor, 2,2'7,7'-tetrakis-(N,N-di-p-methoxyphenyl-amine)-9,9'-spirobifluorene (spiro-MeOTAD), were determined by spectroelectrochemistry. The onset of oxidation of a solid film of spiro-MeOTAD was found to be 0.15 V versus Fc/Fc(+) and extinction coefficients of spiro-MeOTAD(+) were found to be 33 000 M(-1) cm(-1) at 507 nm and 8500 M(-1) cm-' at 690 nm. Electrons in TiO(2) films were shown to alter the ground-state absorption spectra of ID28 attached to TiO(2)-PIA measurements indicated a good contact between ID28 and spiro-MeOTAD for different spiro-MeOTAD concentrations for both 2- and 6-mu m thick TiO(2) films. We discuss the possibility of estimating the quality of pore filling from the positions of absorption peaks. Results suggested that with a spiro-MeOTAD concentration of 300 mg mL(-1) in chlorobenzene, a uniform distribution of spiro-MeOTAD in the pores of the 6-mu m thick TiO(2) film could be achieved.

  • 13.
    Cappel, Ute B.
    et al.
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Liu, Peng
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Johansson, Fredrik O. L.
    Uppsala Univ, Div Mol & Condensed Matter Phys, Dept Phys & Astron, SE-75120 Uppsala, Sweden..
    Philippe, Bertrand
    Uppsala Univ, Div Mol & Condensed Matter Phys, Dept Phys & Astron, SE-75120 Uppsala, Sweden..
    Giangrisostomi, Erika
    Helmholtz Zentrum Berlin GmbH, Inst Methods & Instrumentat Synchrotron Radiat Re, Albert Einstein Str 15, D-12489 Berlin, Germany..
    Ovsyannikov, Ruslan
    Helmholtz Zentrum Berlin GmbH, Inst Methods & Instrumentat Synchrotron Radiat Re, Albert Einstein Str 15, D-12489 Berlin, Germany..
    Lindblad, Andreas
    Uppsala Univ, Div Mol & Condensed Matter Phys, Dept Phys & Astron, SE-75120 Uppsala, Sweden..
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Gardner, James M.
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Rensmo, Hakan
    Uppsala Univ, Div Mol & Condensed Matter Phys, Dept Phys & Astron, SE-75120 Uppsala, Sweden..
    Electronic Structure Characterization of Cross-Linked Sulfur Polymers2018In: ChemPhysChem, ISSN 1439-4235, E-ISSN 1439-7641, Vol. 19, no 9, p. 1041-1047Article in journal (Refereed)
    Abstract [en]

    Cross-linked polymers of elemental sulfur are of potential interest for electronic applications as they enable facile thin-film processing of an abundant and inexpensive starting material. Here, we characterize the electronic structure of a cross-linked sulfur/diisopropenyl benzene (DIB) polymer by a combination of soft and hard X-ray photoelectron spectroscopy (SOXPES and HAXPES). Two different approaches for enhancing the conductivity of the polymer are compared: the addition of selenium in the polymer synthesis and the addition of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) during film preparation. For the former, we observe the incorporation of Se into the polymer structure resulting in a changed valence-band structure. For the latter, a Fermi level shift in agreement with p-type doping of the polymer is observed and also the formation of a surface layer consisting mostly of TFSI anions.

  • 14. Chen, C.
    et al.
    Zhang, P.
    Wang, M.
    Zheng, D.
    Chen, J.
    Li, F.
    Wu, X.
    Fan, K.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Boosting Electrocatalytic Water Oxidation by Creating Defects and Lattice-Oxygen Active Sites on Ni-Fe Nanosheets2020In: ChemSusChem, ISSN 1864-5631, E-ISSN 1864-564X, Vol. 13, no 18, p. 5067-5072Article in journal (Refereed)
    Abstract [en]

    Layered nickel-iron oxide/hydroxide nanosheets have proven to be the most efficient catalyst for the water oxidation reaction. Introducing structural defects to the nanosheets is a particularly attractive method for increasing the number of active sites and tailoring the intrinsic electronic properties. Herein, defects were introduced on Ni−Fe nanosheets through sequentially electrodoping and dedoping the surface of the material with tetramethylammonium ions. The as-prepared defect-rich Ni−Fe nanosheets showed an enhanced catalytic performance for the oxygen evolution reaction (OER) compared with conventional NiFe layered double hydroxides (LDHs), exhibiting an overpotential of only 172 mV at the current density of 10 mA cm−2. The relationship between pH and OER activity indicated that the lattice oxygens participated in the catalytic OER process as active sites. This work provides new insights into the understanding of the structure-activity relationship of layered materials and helps to develop new methods to implement defects on such frameworks aided by organic molecules.

  • 15. Chen, Cheng
    et al.
    Yang, Xichuan
    Cheng, Ming
    Zhang, Fuguo
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Degradation of Cyanoacrylic Acid-Based Organic Sensitizers in Dye-Sensitized Solar Cells2013In: ChemSusChem, ISSN 1864-5631, E-ISSN 1864-564X, Vol. 6, no 7, p. 1270-1275Article in journal (Refereed)
    Abstract [en]

    Organic dyes have become widely used in dye-sensitized solar cells (DSSCs) because of their good performance, flexible structural modifications, and low costs. To increase the photostability of organic dye-based DSSCs, we conducted a full study on the degradation mechanism of cyanoacrylic acid-based organic sensitizers in DSSCs. The results showed that with the synergy between water and UV light, the sensitizer could desorb from the TiO2 surface and the cyanoacrylic acid unit of the sensitizer was transformed into the aldehyde group. It was also observed that the water content had a great effect on the degradation process. Our experiments conducted using O-18-labeled water demonstrated that the oxygen atom of the aldehyde group identified in the degraded dye came from the solvent water in the DSSCs. Therefore, controlling the water content during DSSC fabrication, good sealing of cells, and filtering the UV light are crucial to produce DSSCs that are more durable and robust.

  • 16. Chen, Cheng
    et al.
    Yang, Xichuan
    Cheng, Ming
    Zhang, Fuguo
    Zhao, Jianghua
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Efficient Panchromatic Organic Sensitizers with Dihydrothiazole Derivative as pi-Bridge for Dye-Sensitized Solar Cells2013In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 5, no 21, p. 10960-10965Article in journal (Refereed)
    Abstract [en]

    Novel organic dyes CC201 and CC202 with dihydrothiazole derivative as pi-bridge have been synthesizedand applied in the DSSCs. With the synergy electron-withdrawing of dihydrothiazole and cyanoacrylic acid, these two novel dyes CC201 and CC202 show excellent response in the region of 500-800 nm. An efficiency as high as 6.1% was obtained for the device fabricated by sensitizer CC202 together with cobalt electrolyte under standard light illumination (AM 1.5G, 100 mW cm(-2)). These two novel D-pi-A panchromatic organic dyes gave relatively high efficiencies except common reported squaraine dyes.

  • 17. Chen, Cheng
    et al.
    Yang, Xichuan
    Cheng, Ming
    Zhang, Fuguo
    Zhao, Jianghua
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Highly efficient organic dyes containing a benzopyran ring as a pi-bridge for DSSCs2013In: RSC Advances, E-ISSN 2046-2069, Vol. 3, no 31, p. 12688-12693Article in journal (Refereed)
    Abstract [en]

    A series of novel organic dyes containing a benzopyran ring as a p-bridge have been designed and applied in dye-sensitized solar cells (DSSCs). This series of dyes show the excellent DSSCs' performance, due to their efficient light-to-photocurrent conversion in the region from 380 nm to 600 nm, with the highest IPCE values exceeding 90%. Through modification of the donor units, an efficiency as high as 7.5% has been achieved under standard light illumination (AM 1.5G, 100 mW cm(-2)) by the dye CC103.

  • 18. Chen, H.
    et al.
    Gao, Y.
    Ye, L.
    Yao, Y.
    Chen, X.
    Wei, Y.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    A Cu2Se-Cu2O film electrodeposited on titanium foil as a highly active and stable electrocatalyst for the oxygen evolution reaction2018In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 54, no 39, p. 4979-4982Article in journal (Refereed)
    Abstract [en]

    Many nonprecious metal-selenide-based materials have been reported as electrocatalysts with high activity for the oxygen evolution reaction (OER). Herein, a hybrid catalyst film composed of Cu2Se and Cu2O nanoparticles directly grown on Ti foil (Cu2Se-Cu2O/TF) was prepared through a simple and fast cathodic electrodeposition method. Surprisingly, this electrode required a relatively low overpotential of 465 mV to achieve a catalytic current density of 10 mA cm-2 for the OER in 0.2 M carbonate buffer (pH = 11.0). Furthermore, a long-term constant current electrolysis test confirmed the high durability of the Cu2Se-Cu2O/TF anode at a current density of 10 mA cm-2 over 20 h. The XRD, TEM and XPS analysis of the sample after the OER indicated that a CuO protective layer formed on the surface of the Cu2Se-Cu2O catalyst, which effectively suppressed further oxidation of the Cu2Se-Cu2O catalyst during the OER and resulted in sustained catalytic oxidation of water.

  • 19. Chen, Hong
    et al.
    Zhao, Huishuang
    Yu, Zheng-Bao
    Wang, Lei
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Sun, Licheng
    Sun, Junliang
    Construct Polyoxometalate Frameworks through Covalent Bonds2015In: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 54, no 17, p. 8699-8704Article in journal (Refereed)
    Abstract [en]

    An emerging strategy for exploring the application of polyoxometalates (POMs) is to assemble POM clusters into open-framework materials, especially inorganic organic hybrid three-dimensional (3D) open-framework materials, via the introduction of different organic linkers between the POM clusters. This strategy has yielded a few 3D crystalline POMs of which a typical class is the group of polyoxometalate metal organic frameworks (POMMOFs). However, for reported POMMOFs, only coordination bonds are involved between the linkers and POM clusters, and it has not yet produced any covalently bonded polyoxometalate frameworks. Here, the concept of "covalently bonded POMs (CPOMs)" is developed. By using vanadoborates as an example, we showed that the 3D CPOMs can be obtained by a condensation reaction through the oxolation mechanism of polymer chemistry. In particular, suitable single crystals were harvested and characterized by single-crystal X-ray diffraction. This work forges a link among polymer science, POM chemistry, and open-framework materials by demonstrating that it is possible to use covalent bonds according to polymer chemistry principles to construct crystalline 3D open-framework POM materials.

  • 20. Chen, Lin
    et al.
    Wang, Mei
    Han, Kai
    Zhang, Peili
    Gloaguen, Frederic
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    A super-efficient cobalt catalyst for electrochemical hydrogen production from neutral water with 80 mV overpotential2014In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 7, no 1, p. 329-334Article in journal (Refereed)
    Abstract [en]

    Self-assembled molecular iron and cobalt catalysts (MP4N2, M = Fe, Co) bearing a multihydroxy-functionalized tetraphosphine ligand electrocatalyze H-2 generation from neutral water on a mercury electrode at -1.03 and -0.50 V vs. NHE, respectively. Complex CoP4N2 displays extremely low overpotential (E-onset = 80 mV) while maintaining high activity and good stability. Bulk electrolysis of CoP4N2 in a neutral phosphate buffer solution at -1.0 V vs. NHE produced 9.24 x 10(4) mol H-2 per mol cat. over 20 h, with a Faradaic efficiency close to 100% and without apparent deactivation.

  • 21. Cheng, M.
    et al.
    Yang, X.
    Li, J.
    Zhang, F.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Co-sensitization of organic dyes for efficient dye-sensitized solar cells2013In: ChemSusChem, ISSN 1864-5631, Vol. 6, no 1, p. 70-77Article in journal (Refereed)
    Abstract [en]

    Novel cyanine dyes, in which a tetrahydroquinoline derivative is used as an electron donor and 1-butyl-5-carboxy-3, 3-dimethyl-indol-1-ium moiety is used as an electron acceptor and anchoring group, were designed and synthesized for application in dye-sensitized solar cells. The photovoltaic performance of these solar cells depends markedly on the molecular structure of the dyes in terms of the n-hexyl chains and the methoxyl unit. Retardation of charge recombination caused by the introduction of n-hexyl chains resulted in an increase in electron lifetime. As a consequence, an improvement of open-circuit photovoltage (V oc) was achieved. Also, the electron injection efficiencies were improved by the introduction of methoxyl moiety, which led to a higher short-circuit photocurrent density (Jsc). The highest average efficiency of the sensitized devices (η) was 5.6 % (Jsc=13.3 mA cm-2, Voc=606 mV, and fill factor FF=69.1 %) under 100 mW cm-2 (AM 1.5G) solar irradiation. All of these dyes have very high absorption extinction coefficients and strong absorption in a relatively narrow spectrum range (500-650 nm), so one of our organic dyes was explored as a sensitizer in co-sensitized solar cells in combination with the other two other existing organic dyes. Interestingly, a considerably improved photovoltaic performance of 8.2 % (Jsc=20.1 mA cm-2, Voc=597 mV, and FF=68.3 %) was achieved and the device showed a panchromatic response with a high incident photon-to-current conversion efficiency exceeding 85 % in the range of 400-700 nm. Sensitive dyes absorb it all: Co-sensitization of three spectrally complementary dyes on a TiO2 film in a well-designed sequence significantly improves the photovoltaic performance of the device, and an efficiency of 8.2 % is achieved. The devices demonstrate a panchromatic response with an incident photon-to-current conversion efficiency >80 % over the entire visible spectral region from 400 to 700 nm.

  • 22.
    Cheng, Ming
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Li, Yuanyuan
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Safdari, Majid
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Chen, Cheng
    Liu, Peng
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics. KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Efficient Perovskite Solar Cells Based on a Solution Processable Nickel(II) Phthalocyanine and Vanadium Oxide Integrated Hole Transport Layer2017In: Advanced Energy Materials, ISSN 1614-6832, E-ISSN 1614-6840, Vol. 7, no 14, article id 1602556Article in journal (Refereed)
    Abstract [en]

    An organic-inorganic integrated hole transport layer (HTL) composed of the solution-processable nickel phthalocyanine (NiPc) abbreviated NiPc-(OBu)(8) and vanadium(V) oxide (V2O5) is successfully incorporated into structured mesoporous perovskite solar cells (PSCs). The optimized PSCs show the highest stabilized power conversion efficiency of up to 16.8% and good stability under dark ambient conditions. These results highlight the potential application of organic-inorganic integrated HTLs in PSCs.

  • 23.
    Cheng, Ming
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Xu, Bo
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Chen, C.
    Yang, X.
    Zhang, F.
    Tan, Q.
    Hua, Yong
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Phenoxazine-based small molecule material for efficient perovskite solar cells and bulk heterojunction organic solar cells2015In: Advanced Energy Materials, ISSN 1614-6832, E-ISSN 1614-6840, Vol. 5, no 8, article id 1401720Article in journal (Refereed)
    Abstract [en]

    The phenoxazine-based acceptor-donor-acceptor structured small-molecule material M1 is used either as a hole-transport material in (CH<inf>3</inf>NH<inf>3</inf>)PbI<inf>3</inf>-perovskite-based solar cells or as photoactive donor material in bulk heterojunction organic solar cells. Excellent power conversion efficiencies of 13.2% and 6.9% are achieved in these two types of photovoltaic devices, respectively.

  • 24. Cheng, Ming
    et al.
    Yang, Xichuan
    Chen, Cheng
    Tan, Qin
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Molecular engineering of small molecules donor materials based on phenoxazine core unit for solution-processed organic solar cells2014In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 2, no 27, p. 10465-10469Article in journal (Refereed)
    Abstract [en]

    A D-pi-A type small molecule POZ4 and a A-pi-D-pi-A type small molecule POZ6, in which phenoxazine was used as the central building block and dicyanovinyl was employed as the electron-withdrawing end-group, have been designed and synthesized. Compared with D-pi-A type donor material POZ4, the donor material POZ6 with A-pi-D-pi-A configuration shows much wider response to solar light. An efficiency of 5.60% was obtained for the POZ6: PC71BM based solar cells, and the device fabricated with POZ6:PC71BM (1 : 1) showed a much better balanced hole and electron mobility of 2.24 x 10(-4) cm(2) V-1 s(-1) and 3.17 x 10(-4) cm(2) V-1 s(-1), respectively.

  • 25. Cheng, Ming
    et al.
    Yang, Xichuan
    Chen, Cheng
    Zhao, Jianghua
    Tan, Qin
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Effect of the acceptor on the performance of dye-sensitized solar cells2013In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 15, no 40, p. 17452-17459Article in journal (Refereed)
    Abstract [en]

    Three new phenothiazine dyes were designed and synthesized, utilizing different acceptor groups. Upon application to TiO2-based solar cells, the effects of different acceptors on the photophysical and electrochemical properties of the dyes and the solar cell performance are detailed. The introduction of a pyridinium unit or 5-carboxy-1-hexyl-2,3,3-trimethyl-indolium unit into the molecular frame as the acceptor instead of cyano acrylic acid can effectively cause a red shift in the absorption spectra. Applied to DSSCs, the devices sensitized by CM502 with the pyridinium unit as the acceptor show the highest efficiency of 7.3%. The devices fabricated with dye CM501 with cyano acrylic acid as the acceptor exhibited the highest V-oc while for the devices sensitized by the dye CM503 with 5-carboxy-1-hexyl2,3,3- trimethyl-3H-indolium unit as the acceptor, the Voc value was the lowest, at 494 mV. The addition of TBP in the electrolyte can improve the performance of DSSCs fabricated using CM501 and CM502, with the Voc value greatly improved but the J(sc) value slightly decreased. However, with the addition of TBP in the electrolyte, the efficiency of the cells sensitized by CM503 dropped significantly (from 4.9% to 1.0% when 0.1 M TBP was added).

  • 26. Cheng, Ming
    et al.
    Yang, Xichuan
    Zhao, Jianghua
    Chen, Cheng
    Tan, Qin
    Zhang, Fuguo
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Efficient Organic Dye-Sensitized Solar Cells: Molecular Engineering of Donor-Acceptor-Acceptor cationic dyes2013In: ChemSusChem, ISSN 1864-5631, E-ISSN 1864-564X, Vol. 6, no 12, p. 2322-2329Article in journal (Refereed)
    Abstract [en]

    Three metal-free donor-acceptor-acceptor sensitizers with ionized pyridine and a reference dye were synthesized, and a detailed investigation of the relationship between the dye structure and the photophysical and photoelectrochemical properties and the performance of dye-sensitized solar cells (DSSCs) is described. The ionization of pyridine results in a red shift of the absorption spectrum in comparison to that of the reference dye. This is mainly attributable to the ionization of pyridine increasing the electron-withdrawing ability of the total acceptor part. Incorporation of the strong electron-withdrawing units of pyridinium and cyano acrylic acid gives rise to optimized energy levels, resulting in a large response range of wavelengths. When attached to TiO2 film, the conduction band of TiO2 is negatively shifted to a different extent depending on the dye. This is attributed to the electron recombination rate between the TiO2 film and the electrolyte being efficiently suppressed by the introduction of long alkyl chains and thiophene units. DSSCs assembled using these dyes show efficiencies as high as 8.8%.

  • 27. Cheng, Minglun
    et al.
    Wang, Mei
    Zheng, Dehua
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Effect of the S-to-S bridge on the redox properties and H-2 activation performance of diiron complexes related to the [FeFe]-hydrogenase active site2016In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 45, no 44, p. 17687-17696Article in journal (Refereed)
    Abstract [en]

    Three biomimetic models of the [FeFe]-hydrogenase active site, namely diiron dithiolates of [(mu-edt){Fe(CO)(3)}{Fe(CO)(kappa(2)-PNP)}] (1, edt = ethane-1,2-dithiolate, PNP = Ph2PCH2N(nPr)CH2PPh2), [(mu bdtMe){Fe(CO)(3)}{Fe(CO)(kappa(2)-PNP)}] (2, bdtMe = 4-methylbenzene-1,2-dithiolate), and [(mu-adtBn){Fe(CO)(3)} {Fe(CO)(kappa(2)-PNP)}] (3, adtBn = N-benzyl-2-azapropane-1,3-dithiolate), were prepared and structurally characterized. These complexes feature the same PNP ligand but different S-to-S bridges. Influence of the S-to-S bridge on the electrochemical properties and chemical oxidation reactivity of 1-3 was studied by cyclic voltammetry and by in situ IR spectroscopy. The results reveal that the S-to-S bridge has a considerable effect on the oxidation reactivity of 1-3 and on the stability of in situ generated single-electron oxidized complexes, [1](+), [2](+), and [3](+). The performances of [1](+) and [2](+) for H-2 activation were explored in the presence of a mild chemical oxidant, while rapid decomposition of [3](+) thwarted the further study of this complex. Gratifyingly, 1 was found to be catalytically active, although in a low turnover number, for H-2 oxidation in the presence of excess mild oxidant and a proton trapper under 1 atm H-2 at room temperature.

  • 28. Colodrero, Silvia
    et al.
    Mihi, Agustin
    Häggman, Leif
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Ocana, Manuel
    Boschloo, Gerrit
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Hagfeldt, Anders
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Miguez, Hernan
    Porous One-Dimensional Photonic Crystals Improve the Power-Conversion Efficiency of Dye-Sensitized Solar Cells2009In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 21, no 7, p. 764-+Article in journal (Refereed)
    Abstract [en]

    The solar-to-electric power-conversion efficiency (71) of dye-sensitized solar cells can be greatly enhanced by integrating a mesoporous, nanoparticle-based, 1D photonic crystal as a coherent scattering layer in the device. The photogenerated current is greatly improved without altering the open-circuit voltage of the cell, while keeping the transparency of the cell intact. Improved average 77 values between 15% and 30% are attained.

  • 29.
    Cong, Jiayan
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Hao, Yan
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Two Redox Couples are Better Than One: Improved Current and Fill Factor from Cobalt-Based Electrolytes in Dye-Sensitized Solar Cells2014In: Advanced Energy Materials, ISSN 1614-6832, E-ISSN 1614-6840, Vol. 4, no 8, p. 1301273-Article in journal (Refereed)
    Abstract [en]

    A tandem redox strategy is used in cobalt-based electrolytes. Co(bpy) 3 2+/Co(bpy)3 3+ offers a high photovoltage at the photoanode, whereas the I-/I3 - or Fc/Fc+ redox couples facilitate charge transfer at the counter electrode. Electron exchange in the electrolyte offers beneficial concentration gradients. The overall conversion efficiency is improved from 6.5% to 7.5%.

  • 30. Cong, Jiayan
    et al.
    Yang, Xichuan
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Iodine/iodide-free redox shuttles for liquid electrolyte-based dye-sensitized solar cells2012In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 5, no 11, p. 9180-9194Article, review/survey (Refereed)
    Abstract [en]

    Dye-sensitized solar cells have attracted intense academic interest over the past two decades. For a long time, the development of new redox systems has fallen far behind that of the sensitizing dyes and other materials. However, the field has received renewed attention recently. In particular, in 2011, the Gratzel group published a record DSC efficiency of 12.3% by using a new Co-complex-based electrolyte. In this review, we will provide an overview of iodine/iodide-free redox systems for liquid electrolytes, and reveal that the design of an efficient redox system should combine with appropriate sensitizing dyes which is the pivotal challenge for highly efficient DSCs.

  • 31.
    Daniel, Quentin
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    Duan, Lele
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Timmer, Brian J. J.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    Chen, Hong
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    Luo, Xiaodan
    Peking Univ, Coll Chem & Mol Engn, Beijing 100871, Peoples R China..
    Ambre, Ram
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    Wang, Ying
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    Zhang, Biaobiao
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    Zhang, Peili
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Wang, Lei
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    Li, Fusheng
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Sun, Junliang
    Peking Univ, Coll Chem & Mol Engn, Beijing 100871, Peoples R China..
    Ahlquist, Mårten S. G.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Theoretical Chemistry and Biology.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Water Oxidation Initiated by In Situ Dimerization of the Molecular Ru(pdc) Catalyst2018In: ACS Catalysis, E-ISSN 2155-5435, Vol. 8, no 5, p. 4375-4382Article in journal (Refereed)
    Abstract [en]

    The mononuclear ruthenium complex [Ru(pdc)L-3] (H(2)pdc = 2,6-pyridinedicarboxylic acid, L = N-heterocycles such as 4-picoline) has previously shown promising catalytic efficiency toward water oxidation, both in homogeneous solutions and anchored on electrode surfaces. However, the detailed water oxidation mechanism catalyzed by this type of complex has remained unclear. In order to deepen understanding of this type of catalyst, in the present study, [Ru(pdc)(py)(3)] (py = pyridine) has been synthesized, and the detailed catalytic mechanism has been studied by electrochemistry, UV-vis, NMR, MS, and X-ray crystallography. Interestingly, it was found that once having reached the Ru-IV state, this complex promptly formed a stable ruthenium dimer [Ru-III(pdc)(py)(2)-O-Ru-IV(pdc)(py)(2)](+). Further investigations suggested that the present dimer, after one pyridine ligand exchange with water to form [Ru-III(pdc)(py)(2)-O-Ru-IV(pdc)(py)(H2O)](+), was the true active species to catalyze water oxidation in homogeneous solutions.

  • 32. Ding, Xin
    et al.
    Gao, Yan
    Zhang, Linlin
    Yu, Ze
    Liu, Jianhui
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Artificial photosynthesis: A two-electrode photoelectrochemical cell for light driven water oxidation with molecular components2014In: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 149, p. 337-340Article in journal (Refereed)
    Abstract [en]

    An efficient two-electrode molecular PEC was assembled, in which a photoanode was constructed using a co-adsorbed method with a molecular photosensitizer (PS) 1 and a molecular catalyst 2 on TiO2-sintered FTO electrode (TiO2(1 + 2)). Without applied bias against a reference electrode, the system achieves remarkable photocurrent densities and carries out light driven water oxidation as evidenced by Clark electrode measurements in solution. A photocurrent density of 70 mA/cm(2) has been obtained within 10 s illumination time, and a TON of about 220 was obtained with a maximum turnover frequency (TOF) of ca. 4 min(-1) within the initial 5 minutes illumination duration.

  • 33. Du, Jian
    et al.
    Li, Fei
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry. Dalian Univ Technol, DUT KTH Joint Educ & Res Ctr Mol Devices, State Key Lab Fine Chem, Dalian 116024, Peoples R China.;Westlake Univ, Sch Sci, Ctr Artificial Photosynth Solar Fuels, Hangzhou 310024, Peoples R China.;KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Dept Chem, S-10044 Stockholm, Sweden..
    Metal-organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction2021In: Chemical Society Reviews, ISSN 0306-0012, E-ISSN 1460-4744, Vol. 50, no 4, p. 2663-2695Article, review/survey (Refereed)
    Abstract [en]

    Electrochemical water splitting is an appealing and promising approach for energy conversion and storage. As a key half-reaction of electricity-driven water splitting, the oxygen evolution reaction (OER) is a sluggish process due to the transfer of four protons and four electrons. Therefore, development of low-cost and robust OER electrocatalysts is of great importance for improving the efficiency of water splitting. Based on the merits of high surface area, rich pore structure, diverse composition and well-defined metal centers, metal-organic frameworks (MOFs) and their derivatives have been widely exploited as OER electrocatalysts. Herein, the current progress on MOFs and their derivatives for OER electrolysis is summarized, highlighting the design principle, synthetic methods and performance for MOF-based materials. In addition, the structure-performance relationships of MOFs and their derivatives toward the OER are discussed, providing valuable insights into rationally developing OER catalysts with high efficiency. The current scientific and technological challenges and future perspectives towards the purpose of sustainable industrial applications are addressed at the end.

  • 34.
    Du, Jian
    et al.
    Dalian Univ Technol, DUT KTH Joint Educ & Res Ctr Mol Devices, State Key Lab Fine Chem, Dalian 116024, Peoples R China..
    Liu, Guoquan
    Dalian Univ Technol, DUT KTH Joint Educ & Res Ctr Mol Devices, State Key Lab Fine Chem, Dalian 116024, Peoples R China..
    Li, Fei
    Dalian Univ Technol, DUT KTH Joint Educ & Res Ctr Mol Devices, State Key Lab Fine Chem, Dalian 116024, Peoples R China..
    Zhu, Yong
    Dalian Univ Technol, DUT KTH Joint Educ & Res Ctr Mol Devices, State Key Lab Fine Chem, Dalian 116024, Peoples R China..
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Iron-Salen Complex and Co2+ Ion-Derived Cobalt-Iron Hydroxide/Carbon Nanohybrid as an Efficient Oxygen Evolution Electrocatalyst2019In: Advanced Science, E-ISSN 2198-3844, Vol. 6, no 12, article id 1900117Article in journal (Refereed)
    Abstract [en]

    Metal-salen complexes are widely used as catalysts in numerous fundamental organic transformation reactions. Here, CoFe hydroxide/carbon nanohybrid is reported as an efficient oxygen evolution electrocatalyst derived from the in situ formed molecular Fe-salen complexes and Co2+ ions at a low temperature of 160 degrees C. It has been evidenced that Fe-salen as a molecular precursor facilitates the confined-growth of metal hydroxides, while Co2+ plays a critical role in catalyzing the transformation of organic ligand into nanocarbons and constitutes an essential component for CoFe hydroxide. The resulting Co1.2Fe/C hybrid material requires an overpotential of 260 mV at a current density of 10 mA cm(-2) with high durability. The high activity is contributed to uniform distribution of CoFe hydroxides on carbon layer and excellent electron conductivity caused by intimate contact between metal and nanocarbon. Given the diversity of molecular precursors, these results represent a promising approach to high-performance carbon-based water splitting catalysts.

  • 35.
    Duan, Lele
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Xu, Yunhua
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Zhang, Pan
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Wang, Mei
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Visible Light-Driven Water Oxidation by a Molecular Ruthenium Catalyst in Homogeneous System2010In: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 49, no 1, p. 209-215Article in journal (Refereed)
    Abstract [en]

    Discovery of an efficient catalyst bearing low overpotential toward water oxidation is a key step for light-driven water splitting into dioxygen and dihydrogen. A mononuclear ruthenium complex, Ru(II)L(pic)(2) (1) (H2L = 2,2'-bipyridine-6,6'-dicarboxylic acids pic = 4-picoline), was found capable of oxidizing water eletrochemically at a relatively low potential and promoting light-driven water oxidation using a three-component system composed of a photosensitizer, sacrificial electron acceptor, and complex 1. The detailed electrochemical properties of 1 were studied, and the onset potentials of the electrochemically catalytic curves in pH 7.0 and pH 1.0 solutions are 1.0 and 1.5 V, respectively. The low catalytic potential of 1 under neutral conditions allows the use of [Ru(bpy)(3)](2+) and even [Ru(dmbpy)(3)](2+) as a photosensitizer for photochemical water oxidation. Two different sacrificial electron acceptors, [Co(NH3)(5)Cl]Cl-2 and Na2S2O8, were used to generate the oxidized state of ruthenium tris(2,2'-bipyridyl) photosensitizers. In addition, a two-hour photolysis of I in a pH TO phosphate buffer did not lead to obvious degradation, indicating the good photostability of our catalyst. However, under conditions of light-driven water oxidation, the catalyst deactivates quickly. In both solution and the solid state under aerobic conditions, complex 1 gradually decomposed via oxidative degradation of its ligands, and two of the decomposed products, sp(3) C-H bond oxidized Ru complexes, were identified. The capability of oxidizing the sp(3) C-H bond implies the presence of a highly oxidizing Ru species, which might also cause the final degradation of the catalyst.

  • 36. Edvinsson, Tomas
    et al.
    Pschirer, Neil
    Schoneboom, Jan
    Eickemeyer, Felix
    Boschloo, Gerrit
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Physical Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Hagfeldt, Anders
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Physical Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Photoinduced electron transfer from a terrylene dye to TiO2: Quantification of band edge shift effects2009In: Chemical Physics, ISSN 0301-0104, E-ISSN 1873-4421, Vol. 357, no 1-3, p. 124-131Article in journal (Refereed)
    Abstract [en]

    A terrylene chromophore exhibiting a high extinction coefficient has been developed as a sensitizer for photovoltaic applications. The photophysical and photochemical properties of the dye were analyzed both experimentally and theoretically. Terrylene-sensitized nanocrystalline TiO2 solar cells yielded good photocurrents providing more than 60% in external quantum efficiency. The photoinduced electron transfer from the dye to TiO2 was found to be very sensitive to conduction band edge shifts in TiO2 induced, either by changes in the composition of the redox electrolyte or by UV-illumination. This sensitivity was observed in quantum efficiencies for photocurrent generation of terrylene-sensitized solar cells and in photoinduced absorption experiments. The conduction band shifts were quantified using charge extraction methods. The observed sensitivity of the injection efficiency suggests that photoinduced electron transfer occurs from the relaxed excited state, possibly due to poor electronic coupling between TMIMA excited states and TiO2 conduction band states.

  • 37. Elawad, M.
    et al.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Mola, G. T.
    Yu, Z.
    Arbab, E. A. A.
    Enhanced performance of perovskite solar cells using p-type doped PFB:F4TCNQ composite as hole transport layer2019In: Journal of Alloys and Compounds, ISSN 0925-8388, E-ISSN 1873-4669, Vol. 771, p. 25-32Article in journal (Refereed)
    Abstract [en]

    Conjugated polymers have been widely used as hole transport materials (HTM) in the preparation of mesoscopic perovskite solar cells (PSCs). In this work, we employed p-type doped conducting polymer known as poly(9,9-dioctylfluorene-co-bis-N,N-(-4-butyl phenyl)-bis-N,N-phenyl-1,4-phenylenediamine) (PFB) as a hole transport material (HTM) in perovskite based solar cell. The effect of dopant concentration on the optical and electrical properties of PEB was investigated to optimize the electrical properties of the material for the best function of the solar cell. The highest power conversion efficiency of mesoscopic perovskite solar cells (PSCs), fabricated in this investigation, was found to be 14.04% which is 57% higher than that of pristine PFB hole transport layer. The UV–Vis absorption and Raman spectroscopy measurements confirm the occurrence of oxidation in a p-type doped PFB hole transport layer. This is attributed to the transfer of electrons from the highest occupied molecular orbital (HOMO) of PEB to the lowest unoccupied molecular orbital (LUMO) of F4TCNQ. The solar cells produced using p-type doped PFB:F4TCNQ composite not only improves device performances but also shows superior long-term stability. The optical, morphological and electrical properties of the doped composite PFB: F4TCNQ and newly fabricated devices are presented and discussed in this paper.

  • 38. Ellis, Hanna
    et al.
    Eriksson, Susanna K.
    Feldt, Sandra M.
    Gabrielsson, Erik
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Lohse, Peter W.
    Lindblad, Rebecka
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Rensmo, Håkan
    Boschloo, Gerrit
    Hagfeldt, Anders
    Linker Unit Modification of Triphenylamine-Based Organic Dyes for Efficient Cobalt Mediated Dye-Sensitized Solar Cells2013In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 117, no 41, p. 21029-21036Article in journal (Refereed)
    Abstract [en]

    Linker unit modification of donor-linker-acceptor-based organic dyes was investigated with respect to the spectral and physicochemical properties of the dyes. The spectral response for a series of triphenylamine (TPA)-based organic dyes, called LEG1-4, was shifted into the red wavelength region, and the extinction coefficient of the dyes was increased by introducing different substituted dithiophene units on the pi-conjugated linker. The photovoltaic performance of dye-sensitized solar cells (DSCs) incorporating the different dyes in combination with cobalt-based electrolytes was found to be dependent on dye binding. The binding morphology of the dyes on the TiO2 was studied using photoelectron spectroscopy, which demonstrated that the introduction of alkyl chains and different substituents on the dithiophene linker unit resulted in a larger tilt angle of the dyes with respect to the normal of the TiO2-surface, and thereby a lower surface coverage. The good photovoltaic performance for cobalt electrolyte-based DSCs found here and by other groups using TPA-based organic dyes with a cyclopentadithiophene linker unit substituted with alkyl chains was mainly attributed to the extended spectral response of the dye, whereas the larger tilt angle of the dye with respect to the TiO2-surface resulted in less efficient packing of the dye molecules and enhanced recombination between electrons in TiO2 and Co(III) species in the electrolyte.

  • 39.
    Fan, Lizhou
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Zhang, Biaobiao
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Qiu, Zhen
    Dharanipragada, N. V. R. Aditya
    Timmer, Brian
    Zhang, Fuguo
    Sheng, Xia
    Liu, Tianqi
    Meng, Qijun
    Inge, A. Ken
    Edvinsson, Tomas
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, Superseded Departments (pre-2005), Chemistry. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Molecular functionalization of NiO nanocatalyst for enhanced water oxidation by electronic structure engineeringIn: ChemSusChem, ISSN 1864-5631, E-ISSN 1864-564XArticle in journal (Refereed)
    Abstract [en]

    Tuning the local environment of nanomaterial-based catalysts has emerged as an effective approach to optimize their oxygen evolution reaction (OER) performance, yet the controlled electronic modulation around surface active sites remains a grand challenge. Herein, we achieve directed electronic modulation of NiO nanoparticles by simple surface molecular modification with small organic molecules. By adjusting the electronic properties of modifying molecules, the local electronic structure is rationally tailored and a close electronic structure-activity relationship is discovered: the increasing electron-withdrawing modification readily decreases the electron density around surface Ni sites, accelerating the reaction kinetics and improving OER activity, and vice versa. Detailed investigation by operando Raman spectroelectrochemistry revealed that the electron-withdrawing modification facilitates the charge transfer kinetics, stimulates the catalyst reconstruction, and promotes abundant high-valent γ-NiOOH reactive species generation. The NiO-C6F5 catalyst, with the optimized electronic environment, exhibits superior performance towards water oxidation. This work provides a well-designed and effective approach for heterogeneous catalyst fabrication under the molecular level.

    Download full text (pdf)
    fulltext
  • 40.
    Fan, Lizhou
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Zhang, Biaobiao
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Zhang, Fan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Timmer, Brian
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Kravchenko, Oleksandr
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, Superseded Departments (pre-2005), Chemistry. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    2D MnOx composite catalysts inspired by natural OEC for efficient catalyticwater oxidationManuscript (preprint) (Other academic)
    Abstract [en]

    Birnessite MnOx is a close inorganic model of natural oxygen-evolving complex (OEC) that hasbeen widely investigated for catalytic water oxidation, yet its activity is limited by the pooractive site exposure and sluggish charge transfer. Herein, starting from typical birnessite MnOx,we fabricated a hybrid of 2D manganese oxide nanosheets and pyridyl modified graphene(MnOx-NS/py-G) for electrocatalytic water oxidation. Benefiting from the synergy of structuralexfoliation, graphene substrate and molecular pyridyl modification, the MnOx-NS/py-G exhibitsabundant catalytically active sites exposure, fast electron transport, and promoted proton transferat catalyst surface, which imitates the key features of natural OEC. Consequently, theMnOx-NS/py-G reached over 600 times higher activity compared to the typical birnessite MnOx.Inspired by nature, this work provides a well-designed and effective strategy to develop highlyactive manganese oxide-based water oxidation catalysts.

    Download full text (pdf)
    fulltext
  • 41.
    Franchi, Daniele
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. Inst Chem Organometall Cpds CNR ICCOM, I-50019 Sesto Fiorentino, Italy..
    Leandri, Valentina
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Pizzichetti, Angela Raffaella Pia
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Xu, Bo
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH). Uppsala Univ, Ctr Mol Devices, Dept Chem, Div Phys Chem,Angstrom Lab, SE-75120 Uppsala, Sweden..
    Hao, Yan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Zhang, Wei
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Sloboda, Tamara
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Svanstrom, Sebastian
    Uppsala Univ, Dept Phys & Astron, Div Xray Photon Sci, SE-75120 Uppsala, Sweden..
    Cappel, Ute B.
    KTH, School of Engineering Sciences (SCI), Applied Physics. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry. Westlake Univ, Ctr Artificial Photosynth Solar Fuels, Sch Sci, Hangzhou 310024, Peoples R China..
    Gardner, James M.
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Effect of the Ancillary Ligand on the Performance of Heteroleptic Cu(I) Diimine Complexes as Dyes in Dye-Sensitized Solar Cells2022In: ACS Applied Energy Materials, E-ISSN 2574-0962, Vol. 5, no 2, p. 1460-1470Article in journal (Refereed)
    Abstract [en]

    A series of heteroleptic Cu(I) diimine complexes with different ancillary ligands and 6,6'-dimethyl-2,2'-bipyridine-4,4'-dibenzoic acid (dbda) as the anchoring ligand were selfassembled on TiO2 surfaces and used as dyes for dye-sensitized solar cells (DSSCs). The binding to the TiO2 surface was studied by hard X-ray photoelectron spectroscopy for a brominecontaining complex, confirming the complex formation. The performance of all complexes was assessed and rationalized on the basis of their respective ancillary ligand. The DSSC photocurrent-voltage characteristics, incident photon-to-current conversion efficiency (IPCE) spectra, and calculated lowest unoccupied molecular orbital (LUMO) distributions collectively show a push-pull structural dye design, in which the ancillary ligand exhibits an electron-donating effect that can lead to improved solar cell performance. By analyzing the optical properties of the dyes and their solar cell performance, we can conclude that the presence of ancillary ligands with bulky substituents protects the Cu(I) metal center from solvent coordination constituting a critical factor in the design of efficient Cu(I)-based dyes. Moreover, we have identified some components in the I-/I-3(-)-based electrolyte that causes dissociation of the ancillary ligand, i.e., TiO2 photoelectrode bleaching. Finally, the detailed studies on one of the dyes revealed an electrolyte-dye interaction, leading to a dramatic change of the dye properties when adsorbed on the TiO2 surface.

  • 42.
    Fredin, Kristofer
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Gorlov, M.
    IVF Industrial Research and Development Corporation, Mölndal.
    Pettersson, Henrik
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Hagfeldt, Anders
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Boschloo, Gerrit
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    On the influence of anions in binary ionic liquid electrolytes for monolithic dye-sensitized solar cells2007In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 111, no 35, p. 13261-13266Article in journal (Refereed)
    Abstract [en]

    Five ion c liquids (ILs) of the general formula Im(+)A(-), where Im(+) = I -methyl-3-n-butyl-imidazolium, A(-) = I- (1), BF4- (2), SCN- (3), CF3CO2- (4), and CF(3)S0(3)(-) (5), were used in electrolytes for dye-sensitized monolithic solar cells. The properties of the electrolytes and various characteristics of the solar cell performance, such as electron transport and electron lifetime, were studied. The composition of the binary electrolytes, i.e., the different anions, have a significant effect on the viscosity, but only a modest effect of the measured diffusior. coefficient for triiodide. No significant effect of the electrolyte composition on the electron transport time in the mesoporous TiO2 film was found, while there was a pronounced effect on the electron lifetime. Monolithic solar cells with thiocyanate, IL 3, showed overall light-to-electricity conversion efficiency up to 5.6% in 250 W m(-2) simulated sunlight and have promising stability.

  • 43.
    Fredin, Kristofer
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Nissfolk, Jarl
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Boschloo, Gerrit
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Hagfeldt, Anders
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    The influence of cations on charge accumulation in dye-sensitized solar cell2007In: Journal of Electroanalytical Chemistry, ISSN 0022-0728, E-ISSN 1873-2569, Vol. 609, no 2, p. 55-60Article in journal (Refereed)
    Abstract [en]

    The relation between open-circuit voltage, VOC, light intensity, , and accumulated charge, Q, has been studied for dye-sensitized solar cells (DSCs) containing different counterions to the iodide/triiodide redox couple. At higher light intensities, VOC scaled in the order Cs+ > K+ > Na+ > Li+, which was caused in part by shifts in the conduction band edge. The relation between VOC and Q was fitted to an exponential trap model. It was found that inclusion of a capacitive term improved the fit significantly. The determined values of C were found to be relatively large, up to 75 μF cm−2, and dependent of cation. Physically, the largest fraction of C could be ascribed to the TiO2 bulk or TiO2/dye/electrolyte interface. The interpretation of the trap distribution broadening parameter, β, was found to be dependent of fitting model. Using the model including the linear CVOC term, β was independent of cation and could be viewed as a TiO2 material parameter, while in the model excluding CVOC, β was dependent of cation. Voltage decay experiments were performed to study the cationic influence on recombination. Electron lifetimes were calculated from the voltage decay curves and it was found that the DSC containing Li+ yielded by far the shortest lifetime followed by the DSCs containing Na+, K+ and Cs+. Voltage decay curves include the effect of TiO2 conduction band shifts in the comparison of electron lifetimes with different cations. We therefore suggest that the electron lifetimes should be calculated from the corresponding charge decay curves. From such a comparison, it was found that the DSC containing Li+ yielded the shortest lifetime whereas the DSCs containing Na+, K+ or Cs+ showed approximately identical lifetimes.

  • 44.
    Gabrielsson, Erik
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Ellis, Hanna
    Feldt, Sandra
    Tian, Haining
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Boschloo, Gerrit
    Hagfeldt, Anders
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Convergent/Divergent Synthesis of a Linker-Varied Series of Dyes for Dye-Sensitized Solar Cells Based on the D35 Donor2013In: Advanced Energy Materials, ISSN 1614-6832, E-ISSN 1614-6840, Vol. 3, no 12, p. 1647-1656Article in journal (Refereed)
    Abstract [en]

    A series of four new dyes, based on the D35 type donor moiety with varied linker units, is synthesized using a facile convergent/divergent method, enabled by an improved synthesis of the D35 donor. The dyes are evaluated in dye sensitized solar cells with Co(II/III)(bpy)(3)-based electrolytes. By extending the linker fragment, higher photocurrents and solar energy conversion efficiencies are achieved. It is also found that the linker unit plays a crucial role in maintaining a high open-circuit photovoltage. Based on the photovoltaic performance it is concluded that the hexylthiophene unit is the most suitable for this purpose, as it allows further enhancement of the already high open-circuit voltage of D35 to 0.92 V. The best dye in this series reaches an efficiency of 6.8%.

  • 45.
    Gabrielsson, Erik
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Hao, Yan
    Lohse, Peter William
    Johansson, Erik Martin Jesper
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Hagfeldt, Anders
    Boschloo, Gerrit
    Control of Interfacial Charge Transfer in Organic Dye-SensitizedSolar Cells Based on Cobalt ElectrolytesManuscript (preprint) (Other academic)
  • 46.
    Gabrielsson, Erik
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Tian, Haining
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Eriksson, Susanna K.
    Gao, Jiajia
    Chen, Hong
    Li, Fusheng
    Oscarsson, Johan
    Sun, Juliang
    Resmo, Håkan
    Kloo, lars
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Hagfeldt, Anders
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Dipicolinic Acid: A Strong Anchoring Group with Tunable Redoxand Spectral Behavior for Stable Dye-Sensitized Solar CellsManuscript (preprint) (Other academic)
  • 47.
    Gabrielsson, Erik
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Tian, Haining
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. Uppsala University, Sweden.
    Eriksson, Susanna K.
    Gao, Jiajia
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Chen, Hong
    Li, Fusheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Oscarsson, Johan
    Sun, Junliang
    Rensmo, Håkan
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Hagfeldt, Anders
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. Dalian University of Technology (DUT), China.
    Dipicolinic acid: a strong anchoring group with tunable redox and spectral behavior for stable dye-sensitized solar cells2015In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 51, no 18, p. 3858-3861Article in journal (Refereed)
    Abstract [en]

    Dipicolinic acidwas investigated as a new anchoring group for DSSCs. A pilot dye (PD2) bearing this new anchoring group was found to adsorb significantly stronger to TiO2 than its cyanoacrylic acid analogue. The electrolyte composition was found to have a strong effect on the photoelectrochemical properties of the adsorbed dye in the device, allowing the dye LUMO energy to be tuned by 0.5 eV. Using a pyridine-free electrolyte, panchromatic absorption of the dye on TiO2 extending to 900 nm has been achieved. Solar cells using PD2 and a Co(bpy)(3) based electrolyte showed unique stability under simulated sunlight and elevated temperatures.

  • 48.
    Gao, Jiajia
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    El-Zohry, Ahmed M.
    Uppsala Univ, Angstrom Lab, Dept Chem, Box 523, SE-75120 Uppsala, Sweden..
    Trilaksana, Herri
    Flinders Univ S Australia, Flinders Ctr NanoScale Sci & Technol CNST, Adelaide, SA 5042, Australia..
    Gabrielsson, Erik
    Dyenamo AB, Greenhouse Labs, Tekn Ringen 38A, SE-11428 Stockholm, Sweden..
    Leandri, Valentina
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Ellis, Hanna
    Uppsala Univ, Angstrom Lab, Dept Chem, Box 523, SE-75120 Uppsala, Sweden..
    D'Amario, Luca
    Uppsala Univ, Angstrom Lab, Dept Chem, Box 523, SE-75120 Uppsala, Sweden..
    Safdari, Majid
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Gardner, James M.
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Andersson, Gunther
    Flinders Univ S Australia, Flinders Ctr NanoScale Sci & Technol CNST, Adelaide, SA 5042, Australia..
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Light-Induced Interfacial Dynamics Dramatically Improve the Photocurrent in Dye-Sensitized Solar Cells: An Electrolyte Effect2018In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, no 31, p. 26241-26247Article in journal (Refereed)
    Abstract [en]

    A significant increase in the photocurrent generation during light soaking for solar cells sensitized by the triphenylamine-based D-pi-A organic dyes (PD2 and LEG1) and mediated by cobalt bipyridine redox complexes has been observed and investigated. The crucial role of the electrolyte has been identified in the performance improvement. Control experiments based on a pretreatment strategy reveals TBP as the origin. The increase in the current and IPCE has been interpreted by the interfacial charge-transfer kinetics studies. A slow component in the injection kinetics was exposed for this system. This change explains the increase in the electron lifetime and collection efficiency. Photoelectron spectroscopic measurements show energy shifts at the dye/TiO2 interface, leading us to formulate a hypothesis with respect to an electrolyte induced dye reorganization at the surface.

  • 49.
    Gao, Jiajia
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Tot, Aleksandar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Tian, H.
    Gardner, James M.
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Phuyal, Dibya
    KTH, School of Engineering Sciences (SCI), Applied Physics, Materials and Nanophysics.
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Electrochemical impedance and X-ray absorption spectroscopy analyses of degradation in dye-sensitized solar cells containing cobalt tris(bipyridine) redox shuttles2022In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 24, no 31, p. 18888-18895Article in journal (Refereed)
    Abstract [en]

    Electrochemical impedance spectroscopy (EIS) is a commonly used steady-state technique to examine the internal resistance of electron-transfer processes in solar cell devices, and the results are directly related to the photovoltaic performance. In this study, EIS was performed to study the effects of accelerated ageing, aiming for insights into the degradation mechanisms of dye-sensitized solar cells (DSSCs) containing cobalt tris(bipyridine) complexes as redox mediators. Control experiments based on aged electrolytes differing in concentrations of the redox couple components and cation co-additives were conducted to reveal the correlation of the cell degradation with external and internal properties. The failure modes of the cells emerged as changes in the kinetics of charge- and ion-transfer processes. An insufficient concentration of the redox complexes, in particular Co(iii), was found to be the main reason for the inferior performance after ageing. The related characterization of electrolytes aged outside the solar cell devices confirms the loss of active Co(iii) complexes in the device electrolytes. A new EIS feature at low frequencies emerged during ageing and was analysed. The new EIS feature demonstrates the presence of an unexpected rate-limiting, charge-transfer process in aged devices, which can be attributed to the TiO2/electrolyte interface. High-resolution fluorescence detected X-ray absorption spectroscopy (HERFD-XAS) was performed to identify the reduction of a part of Co(iii) to Co(II) after ageing, by investigating the Co K absorption edge. The HERFD-XAS data suggested a partial reduction of Co(iii) to Co(ii), accompanied by a difference in symmetry of the reduced species.

  • 50. Gibson, Elizabeth A.
    et al.
    Smeigh, Amanda L.
    Le Pleux, Loic
    Fortage, Jerome
    Boschloo, Gerrit
    Blart, Errol
    Pellegrin, Yann
    Odobel, Fabrice
    Hagfeldt, Anders
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Hammarstrom, Leif
    A p-Type NiO-Based Dye-Sensitized Solar Cell with an Open-Circuit Voltage of 0.35 V2009In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 48, no 24, p. 4402-4405Article in journal (Refereed)
12345 1 - 50 of 223
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf