New experimental studies of the onset of dryout and post-dryout heat transfer have been performed in the High-pressure Water Test (HWAT) loop at the Nuclear Reactor Engineering division, KTH, Stockholm, Sweden. The experiments have been performed in a bilaterally heated annulus with dimensions 12.7x24.3x3650 mm and with various flow obstacles placed in the exit part of the channel. The objective of the study has been to obtain a new data set of high accuracy which can be used for validation of detailed computational models for prediction of the influence of flow obstacles on the occurrence of dryout and on the post-dryout heat transfer. To meet the objective, in total 88 K-type thermocouples have been installed in the test section, providing both lateral and axial distribution of the heated wall temperature. Several thermocouples have been placed within and in a direct vicinity of selected flow obstacles to obtain a high spatial resolution of the measured temperature field. A thorough analysis of the experimental uncertainties indicates that the accuracy of temperature measurements is better than +/-2 K.
The measurements have been performed at conditions relevant to nuclear reactor safety applications: system pressure in a range from 5 to 9 MPa, mass flux from 500 to 1500 kg/(m2.s) and inlet sub-cooling from 10 to 40 K. The heat flux applied in the test section was limited to not allow the wall temperature to exceed 900 K.
The experimental results indicate that flow obstacles can either remove a dry-patch completely, or reduce the wall temperature downstream of their location. It has been noted that this effect depends on operational conditions and also on the geometry and axial location of the obstacle. In general, stronger influence has been noted for high mass flow rates and for obstacles with a larger projected cross-section area.