kth.sePublications
Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Kasliwal, Suvansh
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle design.
    Development of Active Rear Wheel Steering and Evaluation of Steering Feel2019Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    In the last few years, with the development of sensor and actuator technology along with increased computation power available on-board of vehicles, the automotive industry is em-ploying more and more mechatronic systems for Advanced Driver Assistance Systems (ADAS) and Autonomous Driving (AD). Driver Assistance Systems are being used to increase safety (eg. Electronic stability program, lane keep assist etc.), reduce drive fatigue (eg. Electronic power steering) and of increasing vehicle performance and handling (eg. torque vectoring).‚is thesis explores one such driver assistance system, the Active Rear Wheel steering (ARWS) system, which is capable of increase the stability and handling of the vehicle at high speeds and reduce driver fatigue at very low speeds (such as parking manoeuvre). ‚e thesis starts by discussing the history and present state of art of ARWS systems and the control algorithms used for it. ‚en, e‡ort is put in to develop tests and objective metrics to evaluate the per-formance of the system compared to a passive vehicle. ‚ese metrics are of importance in situations where subjective driver feedback is either not available at all (such as computer simulations) or when data is needed to back up the driver feedback (inexperienced drivers).‚ese objective metrics can help the design engineer to evaluate and even predict vehicle’s performance during the design and tuning phase.‚e thesis then deÿnes how the ARWS system should beneÿt the handling of the vehicle along with certain undesired behaviour that may arise due to ARWS and should be avoided.‚is was done based upon feedback from experienced drivers and engineers along with inputs from various literature.‚e Sliding Mode Control (SMC) algorithm is chosen for the control of ARWS system due to it relative simplicity and robust performance. ‚e SMC theory is presented and then the con-troller is developed along with the reference model. ‚e controller is then put in a So›ware-in-Loop environment with IPG CarMaker and put through various test scenarios for tuning and evaluation purposes. ‚e results suggest that the system improves the vehicle’s handling.‚e last part of the thesis looks into the steering feel and its objectiÿcation along with how the AWRS system in…uences the steering feel compared to that of a passive vehicle.

    Download full text (pdf)
    fulltext
  • 2.
    Lattuada, Alessandro
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle design.
    Tire-induced vehicle pull2018Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Vehicle pull is an issue that occurs when the driver has to exert a discerniblesteering torque (pull) for the vehicle to run straight, otherwisea lateral drift takes place. This thesis deals with the straight motion ofroad vehicles, with particular focus on the role played by tire characteristics,road cross slope and interactions between tires and vehicle.A thorough theoretical approach has been adopted, adjusting thePacejka’s formulation for effective axle characteristics and extendingthe linear handling diagram theory. This has allowed to obtain innovativeanalytical expressions, describing the straight-driving slip anglesand steering torque offsets.The analytical expressions have been validated, together with asingle-track model, by means of quasi-static and dynamic simulationsof a full-vehicle model. Moreover, a relationship between tire characteristicsand on-center handling has been described, that relates objectivemetrics with subjective feedback.The obtained analytical expressions can be used by vehicle OriginalEquipment Manufacturers (OEMs) or Tire Suppliers for productdevelopment.

    Download full text (pdf)
    fulltext
  • 3.
    Mehdi Pour, Reza
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle design.
    Transmission Dynamics Modelling: Gear Whine Simulation Using AVL Excite2018Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Nowadays, increasing pressure from legislation and customer demands in the automotive industryare forcing manufacturers to produce greener vehicles with lower emissions and fuel consumption.As a result, electrified and hybrid vehicles are a growing popular alternative to traditional internalcombustion engines (ICE). The noise from an electric vehicle comes mainly from contact betweentyres and road, wind resistance and driveline. The noise emitted from the driveline is for the mostpart related to the gearbox. When developing a driveline, it is a factor of importance to estimatethe noise radiating from the gearbox to achieve an acceptable design.Gears are used extensively in the driveline of electric vehicles. As the gears are in mesh, a mainintrusive concern is known as gear whine noise. Gear whine noise is an undesired vibroacousticphenomenon and is likely to originate through the gear contacts and be transferred through themechanical components to the housing where the vibrations are converted into airborne andstructure-borne noise. The gear whine noise originates primarily from the excitation coming fromtransmission error (TE). Transmission error is defined as the difference between the ideal smoothtransfer of motion of a gear and what is in practice due to lack of smoothness.The main objective of this study is to simulate the vibrations generated by the gear whine noise inan electric powertrain line developed by AVL Vicura. The electric transmission used in this studyprovides only a fixed overall gear ratio, i.e. 9.59, under all operation conditions. It is assumed thatthe system is excited only by the transmission error and the mesh stiffness of the gear contacts. Inorder to perform NVH analysis under different operating conditions, a multibody dynamics modelaccording to the AVL Excite program has been developed. The dynamic simulations are thencompared with previous experimental measurements provided by AVL Vicura.Two validation criteria have been used to analyse the dynamic behaviour of the AVL Excite model:signal processing using the FFT method and comparison with the experimental measurements.The results from the AVL Excite model show that the FFT criterion is quite successful and allexcitation frequencies are properly observed in FFT plots. Nevertheless, when it comes to thesecond criterion, as long as not all dynamic parameters of the system such as damping or stiffnesscoefficients are provided with certainty in the model, it is too difficult to investigate the accuracy ofthe AVL Excite model.Another investigation is a numerical design study to analyses how the damping coefficientsinfluence the response. After reducing the damping parameters, the results show that the housingand bearings have the highest influence on the response. If more acceptable results are desired,future studies must be concentrated on these to obtain more acceptable damping values.

    Download full text (pdf)
    fulltext
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf