kth.sePublications
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Boussaa, M.
    et al.
    Barais, O.
    Sunyé, G.
    Baudry, Benoit
    KTH, School of Electrical Engineering and Computer Science (EECS), Centres, Centre for Advanced Software Technology Research (CASTOR).
    Leveraging metamorphic testing to automatically detect inconsistencies in code generator families2020In: Software testing, verification & reliability, ISSN 0960-0833, E-ISSN 1099-1689, Vol. 30, no 1, article id e1721Article in journal (Refereed)
    Abstract [en]

    Generative software development has paved the way for the creation of multiple code generators that serve as a basis for automatically generating code to different software and hardware platforms. In this context, the software quality becomes highly correlated to the quality of code generators used during software development. Eventual failures may result in a loss of confidence for the developers, who will unlikely continue to use these generators. It is then crucial to verify the correct behaviour of code generators in order to preserve software quality and reliability. In this paper, we leverage the metamorphic testing approach to automatically detect inconsistencies in code generators via so-called “metamorphic relations”. We define the metamorphic relation (i.e., test oracle) as a comparison between the variations of performance and resource usage of test suites running on different versions of generated code. We rely on statistical methods to find the threshold value from which an unexpected variation is detected. We evaluate our approach by testing a family of code generators with respect to resource usage and performance metrics for five different target software platforms. The experimental results show that our approach is able to detect, among 95 executed test suites, 11 performance and 15 memory usage inconsistencies.

  • 2. Danglot, Benjamin
    et al.
    Preux, Philippe
    Baudry, Benoit
    Monperrus, Martin
    KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Theoretical Computer Science, TCS. KTH, School of Electrical Engineering and Computer Science (EECS), Centres, Centre for Advanced Software Technology Research (CASTOR).
    Correctness attraction: a study of stability of software behavior under runtime perturbation2018In: Empirical Software Engineering, ISSN 1382-3256, E-ISSN 1573-7616, Vol. 23, no 4, p. 2086-2119Article in journal (Refereed)
    Abstract [en]

    Can the execution of software be perturbed without breaking the correctness of the output? In this paper, we devise a protocol to answer this question from a novel perspective. In an experimental study, we observe that many perturbations do not break the correctness in ten subject programs. We call this phenomenon “correctness attraction”. The uniqueness of this protocol is that it considers a systematic exploration of the perturbation space as well as perfect oracles to determine the correctness of the output. To this extent, our findings on the stability of software under execution perturbations have a level of validity that has never been reported before in the scarce related work. A qualitative manual analysis enables us to set up the first taxonomy ever of the reasons behind correctness attraction.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf